• Anesthesia and analgesia · Jul 2010

    Review

    Noninvasive autoregulation monitoring with and without intracranial pressure in the naive piglet brain.

    • Ken M Brady, Jennifer O Mytar, Kathleen K Kibler, Charles W Hogue, Jennifer K Lee, Marek Czosnyka, Peter Smielewski, and R Blaine Easley.
    • Department of Anesthesiology, Division of Pediatric Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe St., Blalock 943, Baltimore, MD 21287, USA. Kbrady5@jhmi.edu
    • Anesth. Analg. 2010 Jul 1;111(1):191-5.

    BackgroundCerebrovascular autoregulation monitoring is often desirable for critically ill patients in whom intracranial pressure (ICP) is not measured directly. Without ICP, arterial blood pressure (ABP) is a substitute for cerebral perfusion pressure (CPP) to gauge the constraint of cerebral blood flow across pressure changes. We compared the use of ABP versus CPP to measure autoregulation in a piglet model of arterial hypotension.MethodsOur database of neonatal piglet (5-7 days old) experiments was queried for animals with naïve ICP that were made lethally hypotensive to determine the lower limit of autoregulation (LLA). Twenty-five piglets were identified, each with continuous recordings of ICP, regional cerebral oximetry (rSo2), and cortical red cell flux (laser Doppler). Autoregulation was assessed with the cerebral oximetry index (COx) in 2 ways: linear correlation between ABP and rSo2 (COx(ABP)) and between CPP and rSo2 (COx(CPP)). The lower limits of autoregulation were determined from plots of red cell flux versus ABP. Averaged values of COx(ABP) and COx(CPP) from 5 mm Hg ABP bins were used to show receiver operating characteristics for the 2 methods.ResultsCOx(ABP) and COx(CPP) yielded identical receiver operating characteristic curve areas of 0.91 (95% confidence interval [CI], 0.88-0.95) for determining the LLA. However, the thresholds for the 2 methods differed: a threshold COx(ABP) of 0.5 was 89% sensitive (95% CI, 81%-94%) and 81% specific (95% CI, 73%-88%) for detecting ABP below the LLA. A threshold COx(CPP) of 0.42 gave the same 89% sensitivity (95% CI, 81%-94%) with 77% specificity (95% CI, 69%-84%).ConclusionsThe use of ABP instead of CPP for autoregulation monitoring in the naïve brain with COx results in a higher threshold value to discriminate ABP above from ABP below the LLA. However, accuracy was similar with the 2 methods. These findings support and refine the use of near-infrared spectroscopy to monitor autoregulation in patients without ICP monitors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.