• Critical care medicine · Jun 2012

    Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure.

    • Anja K Metzger, Margot Herman, Scott McKnite, Wanchun Tang, and Demetris Yannopoulos.
    • Department of Emergency Medicine, University of Minnesota, Minneapolis, MN, USA.
    • Crit. Care Med.. 2012 Jun 1;40(6):1851-6.

    ObjectiveGeneration of negative intrathoracic pressure during the decompression phase of cardiopulmonary resuscitation enhances the refilling of the heart. We tested the hypothesis that when compared with closed-chest manual compressions at 80 chest compressions per min, treatment with active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min combined with augmentation of negative intrathoracic pressure would lower intracranial pressure and increase cerebral perfusion, thereby improving neurologically intact survival rates following prolonged untreated cardiac arrest.DesignProspective, randomized animal study.SettingAnimal laboratory facilities.SubjectsA total of 26 female farm pigs in two different protocols (n = 17 and n = 9).Interventions, Measurements, And Main ResultsSeventeen pigs were subjected to 8.5 mins of untreated ventricular fibrillation and prospectively randomized to cardiopulmonary resuscitation at 80 chest compressions/min or active compression-decompression cardiopulmonary resuscitation at 80 chest compressions/min plus an impedance threshold device. Coronary perfusion pressures (29.5 ± 2.7 mm Hg vs. 22.4 ± 1.6 mm Hg, p = .03), carotid blood flow (44.0 ± 12.2 vs. 30.9 ± 10.4, p = .03), and 24-hr neurological survival (88% vs. 22%, p = .015) were higher with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device. Cerebral perfusion pressures, measured in nine additional pigs, were improved with active compression-decompression cardiopulmonary resuscitation + an impedance threshold device (21.9 ± 1.2 mm Hg vs. 8.9 ± 0.8 mm Hg, p < .0001). With active compression-decompression cardiopulmonary resuscitation + impedance threshold device, mean diastolic intracranial pressure during decompression was lower (12.2 ± 0.2 mm Hg vs. 16.6 ± 1.2 mm Hg, p = .02) and the downward slope of the decompression phase intracranial pressure curve was steeper (-60.3 ± 12.9 mm Hg vs. -46.7 ± 11.1 mm Hg/sec, p < .001).ConclusionsActive compression-decompression cardiopulmonary resuscitation + an impedance threshold device increased cerebral perfusion pressures and lowered diastolic intracranial pressure and intracranial pressure rate during the decompression phase. These mechanisms may underlie the observed increase in cerebral perfusion pressure, carotid blood flow, and survival rates with favorable neurologic outcomes in this pig model of cardiac arrest.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…