• Critical care medicine · Sep 2011

    Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function.

    • Constantin J C Trepte, Volker Eichhorn, Sebastian A Haas, Hans Peter Richter, Matthias S Goepfert, Jens C Kubitz, Alwin E Goetz, and Daniel A Reuter.
    • Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
    • Crit. Care Med.. 2011 Sep 1;39(9):2106-12.

    ObjectiveThe aim of this study was to assess whether thermodilution-derived parameters of right and left ventricular cardiac function (right ventricular ejection fraction, global ejection fraction, cardiac function index) are able to track changes of cardiac contractile function and whether they are influenced by substantial preload reduction.DesignProspective animal study.SettingUniversity-affiliated animal research laboratory.SubjectsDomestic pigs.InterventionsSixteen domestic pigs were studied. Right ventricular ejection fraction, global ejection fraction, and cardiac function index were compared to direct measurement of left ventricular rate of maximum systolic pressure rise and the left ventricular rate of maximum systolic pressure rise corrected to preload. Measurements were done with normal cardiac function during normo- and hypovolemia. Thereafter, cardiac function was impaired by continuous infusion of verapamil and measurements were repeated during normo- and hypovolemia (withdrawal of blood 20 mL kg body weight).Measurements And Main ResultsWith normal cardiac function, hypovolemia led to a significant decrease of right ventricular ejection fraction from 36.7% ± 6.6% to 29.8% ± 5.8% (p < .001), global ejection fraction from 40.5% ± 6.2% to 33.6% ± 7.6% (p < .001), and the left ventricular rate of maximum systolic pressure rise from 2104 ± 390 mm Hg sec to 1297 ± 438 mm Hg sec (p < .001). Cardiac function index (8.92 ± 2.20 min to 7.93 ± 1.54 min) and the left ventricular rate of maximum systolic pressure rise corrected to preload (18.2 ± 4.7 mm Hg sec mL to 15.2 ± 4.3 mm Hg sec mL) did not change significantly. Infusion of verapamil led to a significant reduction of right ventricular ejection fraction, global ejection fraction, cardiac function index, the left ventricular rate of maximum systolic pressure rise, and the left ventricular rate of maximum systolic pressure rise corrected to preload (p < .001). Now, hypovolemia led to a significant decrease of right ventricular ejection fraction (29.1% ± 4.6% to 24.9% ± 5.9%; p < .001), global ejection fraction (37.1% ± 4.7% to 31.9% ± 3.9%; p < .05), cardiac function index (7.58 ± 1.02 to 6.27 ± 1.19 min; p < .05), and the left ventricular rate of maximum systolic pressure rise (733 ± 141 mm Hg sec to 426 ± 108 mm Hg sec; p < .05). Only the left ventricular rate of maximum systolic pressure rise corrected to preload did not change significantly (6.7 ± 1.3 mm Hg sec mL to 4.6 ± 1 mm Hg sec mL; p > .05).ConclusionsRight ventricular ejection fraction, global ejection fraction, and cardiac function index enable detection of changes in load-independent, intrinsic cardiac contractility. Importantly, they also reflect changes of contractile function caused by substantial decrease of preload, emphasizing the importance of assessing both cardiac contractile function in coherence with cardiac preload to differentiate between reduced intrinsic contractility and hypovolemia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.