-
- Vladimir K Neychev, Xueliang Fan, V I Mitev, Ellen J Hess, and H A Jinnah.
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA.
- Brain. 2008 Sep 1;131(Pt 9):2499-509.
AbstractDystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements or abnormal posturing. Traditional views place responsibility for dystonia with dysfunction of basal ganglia circuits, yet recent evidence has pointed towards cerebellar circuits as well. In the current studies we used two strategies to explore the hypothesis that the expression of dystonic movements depends on influences from a motor network that includes both the basal ganglia and cerebellum. The first strategy was to evaluate the consequences of subthreshold lesions of the striatum in two different animal models where dystonic movements are thought to originate from abnormal cerebellar function. The second strategy employed microdialysis to search for changes in striatal dopamine release in these two animal models where the cerebellum has been already implicated. One of the animal models involved tottering mice, which exhibit paroxysmal dystonia due to an inherited defect affecting calcium channels. In keeping with prior results implicating the cerebellum in this model, surgical removal of the cerebellum eliminated their dystonic attacks. In contrast, subclinical lesions of the striatum with either 6-hydroxydopamine (6OHDA) or quinolinic acid (QA) exaggerated their dystonic attacks. Microdialysis of the striatum revealed dystonic attacks in tottering mice to be associated with a significant reduction in extracellular striatal dopamine. The other animal model involved the induction of dystonia via pharmacological excitation of the cerebellar cortex by local application of kainic acid in normal mice. In this model the site of stimulation determines the origin of dystonia in the cerebellum. However, subclinical striatal lesions with either 6OHDA or QA again exaggerated their generalized dystonia. When dystonic movements were triggered by pharmacological stimulation of the cerebellum, microdialysis revealed significant reductions in striatal dopamine release. These results demonstrate important functional relationships between cerebellar and basal ganglia circuits in two different animal models of dystonia. They suggest that expression of dystonic movements depends on influences from both basal ganglia and cerebellum in both models. These results support the hypothesis that dystonia may result from disruption of a motor network involving both the basal ganglia and cerebellum, rather than isolated dysfunction of only one motor system.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.