• Neurosurgery · Mar 1997

    Role of nitric oxide in cutaneous blood flow increases in the rat hindpaw during dorsal column stimulation.

    • J E Croom, R D Foreman, M J Chandler, M C Koss, and K W Barron.
    • Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
    • Neurosurgery. 1997 Mar 1;40(3):565-70; discussion 571.

    ObjectiveDorsal column stimulation (DCS) increases blood flow to the extremities and may produce a limb-saving effect in addition to treatment of refractory chronic pain in patients with peripheral vascular disease. The purpose of this study was to examine the importance of nitric oxide in cutaneous vasodilation caused by DCS.MethodsMale Sprague-Dawley rats were anesthetized with pentobarbital (60 mg/kg, intraperitoneally). A unipolar ball electrode was placed on the left-side of the exposed spinal cord at approximately L1-L2. Blood flow was concurrently recorded from both hindpaw foot pads with laser doppler flowmeters. Blood flow responses were assessed during 1 minute of DCS (0.6 mA at 50 Hz, 0.2-ms pulse) at 10-minute intervals. Nitric oxide synthase was inhibited with NG-nitro-L-arginine methyl ester (L-NAME). Four groups of animals were examined. The first and second groups involved examination of the effects of DCS after 2 and 10 mg/kg L-NAME, respectively. In the third group, the effect of another nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (10 mg/kg), was examined on the responses to DCS. The fourth group of animals entailed comparison of the effects of DCS under control conditions, after the nicotinic receptor antagonist, hexamethonium (10 mg/kg), and during the combined presence of hexamethonium and L-NAME (10 mg/kg).ResultsL-NAME markedly attenuated the cutaneous blood flow increases caused by DCS at doses of 2 or 10 mg/kg. Similarly, NG-monomethyl-L-arginine also attenuated the DCS response. Hexamethonium did not affect the cutaneous vasodilation caused by DCS. After hexamethonium, L-NAME no longer attenuated the DCS response.ConclusionOur results demonstrated that nitric oxide played a significant role in producing the DCS-induced increase in rat cutaneous hindpaw blood flow. The involvement of nitric oxide does not require the presence of autonomic efferent function; however, ganglionic blockade may unmask a mechanism for vasodilation during DCS that is independent of nitric oxide release.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.