-
Nephron. Physiology · Jan 2014
ReviewThe central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury.
- Can Ince.
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands.
- Nephron Physiol. 2014 Jan 1;127(1-4):124-8.
AbstractAcute kidney injury (AKI) is a rapidly developing condition often associated with critical illness, with a high degree of morbidity and mortality, whose pathophysiology is ill understood. Recent investigations have identified the dysfunction of the renal microcirculation and its cellular and subcellular constituents as being central to the etiology of AKI. Injury is caused by inflammatory activation involving endothelial leucocyte interactions in combination with dysregulation of the homeostatis between oxygen, nitric oxide, and reactive oxygen species. Effective therapies expected to resolve AKI will have to control inflammation and restore this homeostasis. In order to apply and guide these therapies effectively, diagnostic tools aimed at physiological biomarkers of AKI for monitoring renal microcirculatory function in advance of changes in pharmacological biomarkers associated with structural damage of the kidney will need to be developed.2014 S. Karger AG, Basel.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..