-
Critical care medicine · Jan 2008
Identifying potentially shockable rhythms without interrupting cardiopulmonary resuscitation.
- Yongqin Li, Joe Bisera, Fredrick Geheb, Wanchun Tang, and Max Harry Weil.
- Weil Institute of Critical Care Medicine, Rancho Mirage, CA, USA.
- Crit. Care Med. 2008 Jan 1;36(1):198-203.
ObjectiveCurrent versions of automated external defibrillators (AEDs) mandate interruptions of chest compression for rhythm analyses because of artifacts produced by chest compressions. Interruption of chest compressions reduces likelihood of successful resuscitation by as much as 50%. We sought a method to identify a shockable rhythm without interrupting chest compressions during cardiopulmonary resuscitation (CPR).DesignExperimental study.SettingWeil Institute of Critical Care Medicine, Rancho Mirage, CA.SubjectsNone.InterventionsElectrocardiographs (ECGs) were recorded in conjunction with AEDs during CPR in human victims. A shockable rhythm was defined as disorganized rhythm with an amplitude > 0.1 mV or, if organized, at a rate of > or = 180 beats/min. Wavelet-based transformation and shape-based morphology detection were used for rhythm classification. Morphologic consistencies of waveform representing QRS components were analyzed to differentiate between disorganized and organized rhythms. For disorganized rhythms, the amplitude spectrum area was computed in the frequency domain to distinguish between shockable ventricular fibrillation and nonshockable asystole. For organized rhythms, in victims in whom the absence of a heartbeat was independently confirmed, the heart rate was estimated for further classification.Measurements And Main ResultsTo derive the algorithm, we used 29 recordings on 29 patients from the Creighton University ventricular tachyarrhythmia database. For validation, the algorithm was tested on an independent population of 229 victims, including recordings of both ECG and depth of chest compressions obtained during suspected out-of-hospital sudden death. The recordings included 111 instances in which the ECG was corrupted during chest compressions. A shockable rhythm was identified with a sensitivity of 93% and a specificity of 89%, yielding a positive predictive value of 91%. A nonshockable rhythm was identified with a sensitivity of 89%, a specificity of 93%, and a positive predictive value of 91% during uninterrupted chest compression.ConclusionsThe algorithm fulfilled the potential lifesaving advantages of allowing for uninterrupted chest compression, avoiding pauses for automated rhythm analyses before prompting delivery of an electrical shock.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.