• The FEBS journal · Feb 2013

    Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.

    • Rafael Moreno-Sánchez, Luz Hernández-Esquivel, Nadia A Rivero-Segura, Alvaro Marín-Hernández, Jiri Neuzil, Stephen J Ralph, and Sara Rodríguez-Enríquez.
    • Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, Mexico. rafael.moreno@cardiologia.org.mx
    • FEBS J. 2013 Feb 1;280(3):927-38.

    AbstractSuccinate-driven oxidation via complex II (CII) may have a significant contribution towards the high rates of production of reactive oxygen species (ROS) by mitochondria. Here, we show that the CII Q site inhibitor thenoyltrifluoroacetone (TTFA) blocks succinate + rotenone-driven ROS production, whereas the complex III (CIII) Qo inhibitor stigmatellin has no effect, indicating that CII, not CIII, is the ROS-producing site. The complex I (CI) inhibitor rotenone partially reduces the ROS production driven by high succinate levels (5 mm), which is commonly interpreted as being due to inhibition of a reverse electron flow from CII to CI. However, experimental evidence presented here contradicts the model of reverse electron flow. First, ROS levels produced using succinate + rotenone were significantly higher than those produced using glutamate + malate + rotenone. Second, in tumor mitochondria, succinate-driven ROS production was significantly increased (not decreased) by rotenone. Third, in liver mitochondria, rotenone had no effects on succinate-driven ROS production. Fourth, using isolated heart or hepatoma (AS-30D) mitochondria, the CII Qp anti-cancer drug mitochondrially targeted vitamin E succinate (MitoVES) induced elevated ROS production in the presence of low levels of succinate(0.5 mm), but rotenone had no effect. Using sub-mitochondrial particles, the Cu-based anti-cancer drug Casiopeina II-gly enhanced succinate-driven ROS production. Thus, the present results are inconsistent with and question the interpretation of reverse electron flow from CII to CI and the rotenone effect on ROS production supported by succinate oxidation. Instead, a thermodynamically more favorable explanation is that, in the absence of CIII or complex IV (CIV) inhibitors (which, when added, facilitate reverse electron flow by inducing accumulation of ubiquinol, the CI product), the CII redox centers are the major source of succinate-driven ROS production.© 2012 The Authors Journal compilation © 2012 FEBS.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…