• Anesthesia and analgesia · Oct 2013

    Simulation of the Kinetics of Neuromuscular Block: Implications for Speed of Onset.

    • James P Dilger.
    • Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794-8480. James.Dilger@stonybrook.ed.
    • Anesth. Analg.. 2013 Oct 1;117(4):792-802.

    BackgroundThe onset time for paralysis varies 3-fold among nondepolarizing muscle relaxants. Possible explanations include: (a) pharmacokinetic differences among drugs and (b) buffering of drug molecules by acetylcholine receptors as they diffuse into the neuromuscular junction. Although some pharmacokinetic models consider buffered diffusion, these models do not account for either the high density of receptors or synapse geometry. Here, I used computer simulations to calculate the kinetics of buffered diffusion. The goal was to determine the conditions under which buffered diffusion could account for differences in onset time among nondepolarizing muscle relaxants.MethodsMonte Carlo simulation was used along with a realistic 3-dimensional model of the rat neuromuscular junction. Simulations determined the time dependence of the number of drug-bound receptors. A 1000-fold range of drug potency was examined. In some simulations, the drug concentration outside the junction was changed instantaneously. In other simulations, the concentration changed according to predictions of pharmacokinetic models assuming time-dependent changes in plasma drug concentration. The rate constant for equilibration of drug between plasma and muscle, keo, was varied between 0.15 and 0.6 min(-1). Twitch amplitude was calculated from receptor occupancy assuming a high safety margin for neuromuscular transmission. Some simulations used a synaptic model with an increased nerve-muscle contact width.ResultsSimulations with instantaneous changes in drug concentration at the synapse, indicated that the time to 50% twitch depression (onset time) was 0.1 to 30 seconds and was proportional to drug potency. This corresponds to iontophoretic application of drug to isolated neuromuscular junctions, but is too fast to explain onset times in humans. When pharmacokinetic models were used to calculate the drug concentration outside the synapse, buffered diffusion increased onset times of potent drugs (drugs for which the effective concentration at 50% twitch height is <600 nM). Simulations using keo = 0.6 min(-1) and a model with a 2- to 3-fold wider nerve-muscle contact width indicated that buffered diffusion could account for the differences in clinical onset times among the nondepolarizing muscle relaxants.ConclusionMonte Carlo simulation provides a biophysically appropriate way to incorporate buffered diffusion into pharmacokinetic modeling. The simulations indicated that buffered diffusion could account for differences in onset time among drugs. However, a better understanding of the geometry of the human neuromuscular junction is needed before the magnitude of the effect of buffered diffusion can be quantified.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.