• J. Thorac. Cardiovasc. Surg. · May 2001

    Cerebral effects of cold reperfusion after hypothermic circulatory arrest.

    • M P Ehrlich, J McCullough, D Wolfe, N Zhang, H Shiang, D Weisz, C Bodian, and R B Griepp.
    • Department of Cardiothoracic Surgery, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA.
    • J. Thorac. Cardiovasc. Surg. 2001 May 1;121(5):923-31.

    ObjectivesThis study was undertaken to explore whether an interval of cold reperfusion can improve cerebral outcome after prolonged hypothermic circulatory arrest.MethodsSixteen pigs (27-30 kg) underwent 90 minutes of circulatory arrest at a brain temperature of 20 degrees C. Eight animals were rewarmed immediately after hypothermic circulatory arrest (controls), and 8 were reperfused for 20 minutes at 20 degrees C and then rewarmed (cold reperfusion). Electrophysiologic recordings, fluorescent microsphere determinations of cerebral blood flow, calculations of cerebral oxygen consumption, and direct measurements of intracranial pressure (millimeters of mercury) were obtained at baseline (37 degrees C), before hypothermic circulatory arrest, after discontinuing circulatory arrest at 37 degrees C deep brain temperature, and at 2, 4, and 6 hours thereafter. Histopathologic features and percent brain water were determined after the animals were sacrificed.ResultsCerebral blood flow and oxygen consumption decreased during cooling: cerebral oxygen consumption returned to baseline levels after 4 hours, but cerebral blood flow remained depressed until 6 hours in both groups. Cold reperfusion failed to improve electrophysiologic recovery or to reduce brain weight, but median intracranial pressure increased significantly less after cold reperfusion than in controls (P =.02). Although no significant difference in the incidence of histopathologic abnormalities between groups was found, all 3 animals with an intracranial pressure of more than 15 mm Hg after immediate rewarming had histopathologic lesions, and high intracranial pressure was more prevalent among all animals with subsequent histopathologic lesions (P =.03).ConclusionsCold reperfusion significantly inhibited the rise in intracranial pressure seen in control pigs after 90 minutes of circulatory arrest at 20 degrees C, suggesting that cold reperfusion may decrease cerebral edema and thereby improve outcome after prolonged hypothermic circulatory arrest.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…