• Anesthesia and analgesia · Oct 1999

    Halothane, but not the nonimmobilizers perfluoropentane and 1,2-dichlorohexafluorocyclobutane, depresses synaptic transmission in hippocampal CA1 neurons in rats.

    • D M Taylor, E I Eger, and P E Bickler.
    • Department of Anesthesia and Perioperative Care, University of California, San Francisco 94143-0648, USA. taylord@anesthesia.ucsf.edu
    • Anesth. Analg. 1999 Oct 1;89(4):1040-5.

    UnlabelledVolatile anesthetics may decrease synaptic transmission at central neurons by presynaptic and/or postsynaptic actions. Nonimmobilizers are volatile compounds with lipophilicities that suggest that they should (but do not) prevent motor responses to surgical stimuli. However, nonimmobilizers interfere with learning and memory, and, thus, might be predicted to depress synaptic transmission in areas of the brain mediating memory (e.g., hippocampal CA1 neurons). To test this possibility, we stimulated the Schaffer collaterals of rat hippocampal slices and recorded from stratum pyramidale of CA1 neurons. At approximately 0.5 MAC (MAC is the minimum alveolar anesthetic concentration at one standard atmosphere that is required to eliminate movement in response to noxious stimulation in 50% of subjects), halothane decreased population spike amplitude 37% +/- 21% (mean +/- SD), increased latency 15% +/- 9%, and decreased excitatory postsynaptic potentials 16% +/- 10%. In contrast, at concentrations below (0.4 times) predicted MAC, the nonimmobilizer, 1,2 dichlorohexafluorocyclobutane (2N), slightly (not significantly) increased population spike amplitude, decreased population spike latency 9% +/- 4%, and increased excitatory postsynaptic potentials 22% +/- 16%. At concentrations above (2 times) predicted MAC, 2N did not significantly increase population spike, decreased latency 10% +/- 4%, and did not significantly change excitatory postsynaptic potentials. At 0.1 predicted MAC, a second nonimmobilizer, perfluoropentane, tended (P = 0.05) to increase (11% +/- 9%) population spike amplitude, decreased population spike latency 8% +/- 2%, and tended (P = 0.06) to increase excitatory postsynaptic potentials (9% +/- 8%). We conclude that clinically relevant concentrations of halothane depress synaptic transmission at Schaffer collateral-CA1 synapses and that the nonimmobilizers 2N and perfluoropentane have no effect or are excitatory. The Schaffer collateral-CA1 synapse may serve as a useful model for the production of immobility by volatile anesthetics, but is flawed as a model for the capacity of volatile anesthetics to interfere with memory and learning.ImplicationsHalothane, but not the nonimmobilizers 1,2-dichlorohexafluorocyclobutane and perfluoropentane, inhibits hippocampal synaptic transmission at Schaffer collateral-CA1 synapses.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.