-
- L Tyrrell, M Renganathan, S D Dib-Hajj, and S G Waxman.
- Department of Neurology and Paralyzed Veterans of America/Eastern Paralyzed Veterans Association Neuroscience Research Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
- J. Neurosci. 2001 Dec 15;21(24):9629-37.
AbstractNa channel NaN (Na(v)1.9) produces a persistent TTX-resistant (TTX-R) current in small-diameter neurons of dorsal root ganglia (DRG) and trigeminal ganglia. Na(v)1.9-specific antibodies react in immunoblot assays with a 210 kDa protein from the membrane fractions of adult DRG and trigeminal ganglia. The size of the immunoreactive protein is in close agreement with the predicted Na(v)1.9 theoretical molecular weight of 201 kDa, suggesting limited glycosylation of this channel in adult tissues. Neonatal rat DRG membrane fractions, however, contain an additional higher molecular weight immunoreactive protein. Reverse transcription-PCR analysis did not show additional longer transcripts that could encode the larger protein. Enzymatic deglycosylation of the membrane preparations converted both immunoreactive proteins into a single faster migrating band, consistent with two states of glycosylation of Na(v)1.9. The developmental change in the glycosylation state of Na(v)1.9 is paralleled by a developmental change in the gating of the persistent TTX-R Na(+) current attributable to Na(v)1.9 in native DRG neurons. Whole-cell patch-clamp analysis demonstrates that the midpoint of steady-state inactivation is shifted 7 mV in a hyperpolarized direction in neonatal (postnatal days 0-3) compared with adult DRG neurons, although there is no significant difference in activation. Pretreatment of neonatal DRG neurons with neuraminidase causes an 8 mV depolarizing shift in the midpoint of steady-state inactivation of Na(v)1.9, making it indistinguishable from that of adult DRG neurons. Our data show that extensive glycosylation of rat Na(v)1.9 is developmentally regulated and changes a critical property of this channel in native neurons.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.