• Critical care medicine · Aug 2010

    Comparative Study

    Quantitative assessment of somatosensory-evoked potentials after cardiac arrest in rats: prognostication of functional outcomes.

    • Jai Madhok, Anil Maybhate, Wei Xiong, Matthew A Koenig, Romergryko G Geocadin, Xiaofeng Jia, and Nitish V Thakor.
    • Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore, MD, USA.
    • Crit. Care Med. 2010 Aug 1;38(8):1709-17.

    ObjectiveHigh incidence of poor neurologic sequelae after resuscitation from cardiac arrest underscores the need for objective electrophysiological markers for assessment and prognosis. This study aims to develop a novel marker based on somatosensory evoked potentials (SSEPs). Normal SSEPs involve thalamocortical circuits suggested to play a role in arousal. Due to the vulnerability of these circuits to hypoxic-ischemic insults, we hypothesize that quantitative SSEP markers may indicate future neurologic status.DesignLaboratory investigation.SettingUniversity Medical School and Animal Research Facility.Subjects: Sixteen adult male Wistar rats.InterventionsNone.Measurements And Main ResultsSSEPs were recorded during baseline, during the first 4 hrs, and at 24, 48, and 72 hrs postasphyxia from animals subjected to asphyxia-induced cardiac arrest for 7 or 9 mins (n = 8/group). Functional evaluation was performed using the Neurologic Deficit Score (NDS). For quantitative analysis, the phase space representation of the SSEPs-a plot of the signal vs. its slope-was used to compute the phase space area bounded by the waveforms recorded after injury and recovery. Phase space areas during the first 85-190 mins postasphyxia were significantly different between rats with good (72 hr NDS >or=50) and poor (72 hr NDS <50) outcomes (p = .02). Phase space area not only had a high outcome prediction accuracy (80-93%, p < .05) during 85-190 mins postasphyxia but also offered 78% sensitivity to good outcomes without compromising specificity (83-100%). A very early peak of SSEPs that precedes the primary somatosensory response was found to have a modest correlation with the 72 hr NDS subscores for thalamic and brainstem function (p = .066) and not with sensory-motor function (p = .30).ConclusionsPhase space area, a quantitative measure of the entire SSEP morphology, was shown to robustly track neurologic recovery after cardiac arrest. SSEPs are among the most reliable predictors of poor outcome after cardiac arrest; however, phase space area values early after resuscitation can enhance the ability to prognosticate not only poor but also good long-term neurologic outcomes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.