• Radiology · Jul 2014

    Review

    Resting-state functional MR imaging: a new window to the brain.

    • Frederik Barkhof, Sven Haller, and Serge A R B Rombouts.
    • From the Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, the Netherlands (F.B.); Service neuro-diagnostique et neuro-interventionnel DISIM, University Hospitals of Geneva, Geneva, Switzerland (S.H.); and Department of Radiology, Leiden University Medical Center and Institute of Psychology, Leiden University, Leiden, the Netherlands (S.A.R.B.R.).
    • Radiology. 2014 Jul 1;272(1):29-49.

    AbstractResting-state (RS) functional magnetic resonance (MR) imaging constitutes a novel paradigm that examines spontaneous brain function by using blood oxygen level-dependent contrast in the absence of a task. Spatially distributed networks of temporal synchronization can be detected that can characterize RS networks (RSNs). With a short acquisition time of less than 10 minutes, RS functional MR imaging can be applied in special populations such as children and patients with dementia. Some RSNs are already present in utero, while others mature in childhood. Around 10 major RSNs are consistently found in adults, but their exact spatial extent and strength of coherence are affected by physiologic parameters and drugs. Though the acquisition and analysis methods are still evolving, new disease insights are emerging in a variety of neurologic and psychiatric disorders. The default mode network is affected in Alzheimer disease and various other diseases of cognitive impairment. Alterations in RSNs have been identified in many diseases, in the absence of evident structural modifications, indicating a high sensitivity of the method. Moreover, there is evidence of correlation between RSN alterations and disease progression and severity. However, different diseases often affect the same RSN, illustrating the limited specificity of the findings. This suggests that neurologic and psychiatric diseases are characterized by altered interactions between RSNs and therefore the whole brain should be examined as an integral network (with subnetworks), for example, using graph analysis. A challenge for clinical applications of RS functional MR imaging is the potentially confounding effect of aging, concomitant vascular diseases, or medication on the neurovascular coupling and consequently the functional MR imaging response. Current investigation combines RS functional MR imaging and other methods such as electroencephalography or magnetoencephalography to better understand the vascular and neuronal contributions to alterations in functional connectivity.© RSNA, 2014.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.