• Transplantation · Mar 2003

    Clinical Trial

    Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging.

    • Gero Puhl, Klaus D Schaser, Brigitte Vollmar, Michael D Menger, and Utz Settmacher.
    • Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Charité Campus Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin, Berlin, Germany. gero.puhl@charite.de.
    • Transplantation. 2003 Mar 27;75(6):756-61.

    BackgroundAnalysis of hepatic microvascular perfusion in humans by direct imaging has been impossible so far. Orthogonal polarization spectral (OPS) imaging represents a new technology that combines simultaneous epi-illumination of the subject with linearly polarized light and noninvasive imaging of the microcirculation by reflectance spectrophotometry. The aim of this study was to evaluate the feasibility of studying the human hepatic microcirculation by OPS imaging in vivo and to define microcirculatory parameters for physiologic conditions.MethodsThe hepatic microcirculation was analyzed in four different regions of both liver lobes in 11 healthy individuals undergoing partial liver resection for living-donor liver transplantation. The optical probe was gently positioned on the liver surface and sequences of at least 20 sec per measurement were recorded by a charge-coupled device camera on videotape. Microhemodynamic parameters were quantified off-line by single-frame and frame-to-frame analysis using a computer-assisted image analysis system.ResultsOPS images of the hepatic microcirculation showed an acceptable quality with good resolution. Quantitative analysis revealed a sinusoidal red blood cell velocity of 0.97+/-0.43 mm/sec, a sinusoidal diameter of 8.8+/-0.9 microm, a sinusoidal volumetric blood flow of 58.2+/-9.6 pL/sec, an intersinusoidal distance of 22.6+/-2.5 microm, and a mean functional sinusoidal density of 391+/-30 cm-1. Apart from the sinusoidal red blood cell velocity, all data of the parameters studied matched the pattern of normal distribution.ConclusionsOPS imaging enabled for the first time direct in vivo visualization and quantification of the human hepatic microcirculation, providing significant insight into microvascular physiology of the human liver, to the extent that these data can be considered to represent physiologic values for human hepatic microcirculation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.