• Surg Obes Relat Dis · Sep 2012

    Distal airway dysfunction in obese subjects corrects after bariatric surgery.

    • Beno W Oppenheimer, Ryan Macht, Roberta M Goldring, Alexandra Stabile, Kenneth I Berger, and Manish Parikh.
    • André Cournand Pulmonary Physiology Laboratory, Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Bellevue Hospital/New York University School of Medicine, New York, New York 10016, USA. beno.oppenheimer@nyumc.org
    • Surg Obes Relat Dis. 2012 Sep 1;8(5):582-9.

    BackgroundObesity is frequently associated with respiratory symptoms despite normal large airway function as assessed by spirometry. However, reduced functional residual capacity and expiratory reserve volume are common and might reflect distal airway dysfunction. Impulse oscillometry (IOS) might identify distal airway abnormalities not detected using routine spirometry screening. Our objective was to test the hypothesis that excess body weight will result in distal airway dysfunction detected by IOS that reverses after bariatric surgery. The setting was a university hospital.MethodsA total of 342 subjects underwent spirometry, plethysmography, and IOS before bariatric surgery. Of these patients, 75 repeated the testing after the loss of 20% of the total body weight. The data from 47 subjects with normal baseline spirometry and complete pre- and postoperative data were analyzed.ResultsIOS detected preoperative distal airway dysfunction despite normal spirometry findings by an abnormal airway resistance at an oscillation frequency of 20 Hz (4.75 ± 1.2 cm H2O/L/s), frequency dependence of resistance from 5 to 20 Hz (2.20 ± 1.6 cm H2O/L/s), and reactance at 5 Hz (-3.47 ± 2.1 cm H2O/L/s). Postoperatively, the subjects demonstrated 57% ± 15% excess weight loss. The body mass index decreased (from 44 ± 6 to 32 ± 5 kg/m2, P < .001). Improvements in functional residual capacity (from 59% ± 11% to 75% ± 20% predicted, P < .001) and expiratory reserve volume (from 41% ± 20% to 75% ± 20% predicted, P < .001) were demonstrated. Distal airway function also improved: airway resistance at an oscillation frequency of 20 Hz (3.91 ± .9, P < .001), frequency dependence of resistance from 5 to 20 Hz (1.17 ± .9, P < .001), and reactance at 5 Hz (-1.85 ± .9, P < .001).ConclusionThe present study detected significant distal airway dysfunction despite normal preoperative spirometry findings. The effect of increased body weight was likely the main mechanism for these abnormalities. However, the inflammatory state of obesity or associated respiratory disease could also be invoked. These abnormalities improved significantly toward normal after weight loss. The results of the present study highlight the importance of bariatric surgery as an effective intervention in reversing these respiratory abnormalities.Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…