• Br J Anaesth · Sep 2014

    Hypothermia improves oral and gastric mucosal oxygenation during hypoxic challenges.

    • C Vollmer, S Weiß, C Beck, I Bauer, and O Picker.
    • Department of Anaesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany christian.vollmer@uni-duesseldorf.de.
    • Br J Anaesth. 2014 Sep 1;113(3):433-42.

    BackgroundTherapeutic hypothermia, used primarily for protective effects after hypoxia, improves oral and gastric mucosal microvascular oxygenation (μHbO₂) during additional haemorrhage. Therefore, we questioned whether hypothermia likewise improves μHbO₂ during hypoxic challenges. Since both hypothermia and hypoxia reduce cardiac output (e.g. by myofilament Ca(2+) desensitization), and modulate vasomotor tone via K(+) ATP channels, we hypothesized that the Ca(2+) sensitizer levosimendan and K(+) ATP channel blocker glibenclamide would support the cardiovascular system.MethodsThe effects of mild hypothermia (34°C) on μHbO₂ during hypoxia [Formula: see text] were analysed in a cross-over study on five anaesthetized dogs and compared with normothermia (37.5°C) and hypoxia. During hypothermia, but before hypoxia, glibenclamide (0.2 mg kg(-1)) or levosimendan (20 µg kg(-1)+0.25 µg kg(-1) min(-1)) was administered. Systemic haemodynamic variables, gastric and oral mucosal microvascular oxygenation (reflectance spectrophotometry), and perfusion (laser Doppler flowmetry) were recorded continuously. Data are presented as mean (sem), P<0.05.ResultsHypoxia during normothermia reduced gastric μHbO₂ by 27 (3)% and oral μHbO₂ by 28 (3)% (absolute change). During hypothermia, this reduction was attenuated to 16 (3)% and 13 (1)% (absolute change). This effect was independent of microvascular flow that did not change during hypoxia and hypothermia. Additional administration of levosimendan during hypothermia restored reduced cardiac output but did not change flow or μHbO₂ compared with hypothermia alone. Glibenclamide did not exert any additional effects during hypothermia.ConclusionsHypothermia attenuates the decrease in μHbO₂ during additional hypoxic challenges independent of systemic or regional flow changes. A reduction in cardiac output during hypothermia is prevented by Ca(2+) sensitization with levosimendan but not by K(+) ATP channel blockade with glibenclamide.© The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…