-
- M Deng, R D Hofacer, C Jiang, B Joseph, E A Hughes, B Jia, S C Danzer, and A W Loepke.
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai 201102, China Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Br J Anaesth. 2014 Sep 1;113(3):443-51.
BackgroundGeneral anaesthesia facilitates surgical operations and painful interventions in millions of patients every year. Recent observations of anaesthetic-induced neuronal cell death in newborn animals have raised substantial concerns for young children undergoing anaesthesia. However, it remains unclear why some brain regions are more affected than others, why certain neurones are eliminated while neighbouring cells are seemingly unaffected, and what renders the developing brain exquisitely vulnerable, while the adult brain apparently remains resistant to the phenomenon.MethodsNeonatal (P7), juvenile (P21), and young adult mice (P49) were anaesthetized with 1.5% isoflurane. At the conclusion of anaesthesia, activated cleaved caspase 3 (AC3), a marker of apoptotic cell death, was quantified in the neocortex (RSA), caudoputamen (CPu), hippocampal CA1 and dentate gyrus (DG), cerebellum (Cb), and olfactory bulb (GrO) and compared with that found in unanaesthetized littermates.ResultsAfter anaesthetic exposure, increased AC3 was detected in neonatal mice in RSA (11-fold, compared with controls), CPu (10-fold), CA1 (three-fold), Cb (four-fold), and GrO (four-fold). Surprisingly, AC3 continued to be elevated in the DG and GrO of juvenile (15- and 12-fold, respectively) and young adult mice (two- and four-fold, respectively).ConclusionsThe present study confirms the findings of previous studies showing peak vulnerability to anaesthesia-induced neuronal cell death in the newborn forebrain. It also shows sustained susceptibility into adulthood in areas of continued neurogenesis, substantially expanding the previously observed age of vulnerability. The differential windows of vulnerability among brain regions, which closely follow regional peaks in neurogenesis, may explain the heightened vulnerability of the developing brain because of its increased number of immature neurones.© The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.