-
Review Meta Analysis
Learning to detect, categorize, and identify skin lesions: a meta-analysis.
- Liam Rourke, Sarah Oberholtzer, Trish Chatterley, and Alain Brassard.
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- JAMA Dermatol. 2015 Mar 1;151(3):293-301.
ImportanceEducators use a variety of practices to train laypersons, medical students, residents, and primary care providers to diagnose skin lesions. Researchers have described these methods for decades, but there have been few attempts to catalog their scope or effectiveness.ObjectiveTo determine the scope and effectiveness of educational practices to improve the detection, categorization, and identification of skin lesions.Data SourcesLiterature indexed in MEDLINE, EMBASE, CINAHL, ERIC, PsycINFO, and BIOSIS Previews from inception until April 1, 2014, using terms cognate with skin disease, diagnosis, and education.Study SelectionStudies in which the educational objective was operationalized as the ability to detect, categorize, or identify skin lesions, and the intervention was evaluated through comparisons of participants' abilities before and after the intervention.Data Extraction And SynthesisInformation about trainees, educational practices, educational outcomes, and study quality was extracted; it was synthesized through meta-analysis using a random effects model. Effect sizes were calculated by dividing the differences between preintervention and postintervention means by the pooled standard deviation (ie, standardized mean difference [SMD]). Heterogeneity was assessed using an I2 statistic.Main Outcomes And MeasuresPooled effect size across all studies and separate effect sizes for each of the educational practices.ResultsThirty-seven studies reporting 47 outcomes from 7 educational practices met our inclusion criteria. The pooled effect of the practices on participants' abilities was large, with an SMD of 1.06 (95% CI, 0.81-1.31) indicating that posttest scores were approximately 1 SD above pretest scores. Effect sizes varied categorically between educational practices: the dermatology elective (SMD = 1.64; 95% CI, 1.17-2.11) and multicomponent interventions (SMD = 2.07; 95% CI, 0.71-3.44) had large effects; computer-based learning (SMD = 0.64; 95% CI, 0.36-0.92), lecture (SMD = 0.59; 95% CI, 0.28-0.90), pamphlet (SMD = 0.47; 95% CI, -0.11 to 1.05), and audit and feedback (SMD = 0.58; 95% CI, 0.10-1.07) had moderate effects; and moulage had a small effect (SMD = 0.15; 95% CI, -0.26 to 0.57).Conclusions And RelevanceA number of approaches are used to improve participants' abilities to diagnose skin lesions; some are more effective than others. The most effective approaches engage participants in a number of coordinated activities for an extended period, providing learners with the breadth of knowledge and practice required to change the mechanisms underlying performance.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.