• Molecular pharmacology · Feb 2014

    Modulation of transient receptor vanilloid 1 activity by transient receptor potential ankyrin 1.

    • Viola Spahn, Christoph Stein, and Christian Zöllner.
    • Charité, Universitätsmedizin Berlin, Klinik für Anästhesiologie und Operative Intensivmedizin, Berlin, Germany (V.S., C.S., C.Z.); and Universitätsklinikum Hamburg, Eppendorf, Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und Intensivmedizin, Hamburg, Germany (C.Z.).
    • Mol. Pharmacol. 2014 Feb 1;85(2):335-44.

    AbstractTransient receptor potential vanilloid 1 (TRPV1) is a nonselective ligand-gated cation channel responding to noxious heat, protons, and chemicals such as capsaicin. TRPV1 is expressed in sensory neurons and plays a critical role in pain associated with tissue injury, inflammation, and nerve lesions. Transient receptor potential ankyrin 1 (TRPA1) is coexpressed with TRPV1. It is activated by compounds that cause a burning sensation (e.g., mustard oil) and, indirectly, by components of the inflammatory milieu eliciting nociceptor excitation and pain hypersensitivity. Previous studies indicate an interaction of TRPV1 and TRPA1 signaling pathways. Here we sought to examine the molecular mechanisms underlying such interactions in nociceptive neurons. We first excluded physical interactions of both channels using radioligand binding studies. By microfluorimetry, electrophysiological experiments, cAMP measurements, and site-directed mutagenesis we found a sensitization of TRPV1 after TRPA1 stimulation with mustard oil in a calcium and cAMP/protein kinase A (PKA)-dependent manner. TRPA1 stimulation enhanced TRPV1 phosphorylation via the putative PKA phosphorylation site serine 116. We also detected calcium-sensitive increased TRPV1 activity after TRPA1 activation in dorsal root ganglion neurons. The inhibition of TRPA1 by HC-030031 (1,2,3,6-tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7H-purine-7-acetamide, 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide) after its initial stimulation (and the calcium-insensitive TRPA1 mutant D477A) still showed increased capsaicin-induced TRPV1 activity. This excludes a calcium-induced additive TRPA1 current after TRPV1 stimulation. Our study shows sensitization of TRPV1 via activation of TRPA1, which involves adenylyl cyclase, increased cAMP, subsequent translocation and activation of PKA, and phosphorylation of TRPV1 at PKA phosphorylation residues. This suggests that cross-sensitization of TRP channels contributes to enhanced pain sensitivity in inflamed tissues.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.