• J. Thorac. Cardiovasc. Surg. · Jun 1999

    Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. II. hypoxic versus free radical injury.

    • G Nollert, M Nagashima, J Bucerius, T Shin'oka, H G Lidov, A du Plessis, and R A Jonas.
    • Department of Cardiac Surgery, Children's Hospital, and the Department of Surgery, Harvard Medical School, Boston, MA, USA.
    • J. Thorac. Cardiovasc. Surg. 1999 Jun 1;117(6):1172-9.

    ObjectivesLaboratory studies suggest that myocardial reperfusion injury is exacerbated by free radicals when pure oxygen is used during cardiopulmonary bypass. In phase I of this study we demonstrated that normoxic perfusion during cardiopulmonary bypass does not increase the risk of microembolic brain injury so long as a membrane oxygenator with an arterial filter is used. In phase II of this study we studied the hypothesis that normoxic perfusion increases the risk of hypoxic brain injury after deep hypothermia with circulatory arrest.MethodsWith membrane oxygenators with arterial filters, 10 piglets (8-10 kg) underwent 120 minutes of deep hypothermia and circulatory arrest at 15 degrees C, were rewarmed to 37 degrees C, and were weaned from bypass. In 5 piglets normoxia (PaO2 64-181 mm Hg) was used during cardiopulmonary bypass and in 5 hyperoxia (PaO2 400-900 mm Hg) was used. After 6 hours of reperfusion the brain was fixed for histologic evaluation. Near-infrared spectroscopy was used to monitor cerebral oxyhemoglobin and oxidized cytochrome a,a3 concentrations.ResultsHistologic examination revealed a significant increase in brain damage in the normoxia group (score 12.4 versus 8.6, P =.01), especially in the neocortex and hippocampal regions. Cytochrome a,a 3 and oxyhemoglobin concentrations tended to be lower during deep hypothermia and circulatory arrest in the normoxia group (P =.16).ConclusionsIn the setting of prolonged deep hypothermia and circulatory arrest with membrane oxygenators, normoxic cardiopulmonary bypass significantly increases histologically graded brain damage with respect to hyperoxic cardiopulmonary bypass. Near-infrared spectroscopy suggests that the mechanism is hypoxic injury, which presumably overwhelms any injury caused by increased oxygen free radicals.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…