• Neurosurgery · May 1999

    Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia.

    • M A Stoodley, B Gutschmidt, and N R Jones.
    • Department of Surgery (Neurosurgery), University of Adelaide, Royal Adelaide Hospital, Australia.
    • Neurosurgery. 1999 May 1;44(5):1065-75; discussion 1075-6.

    ObjectiveThe source of fluid and the mechanism of cyst enlargement in syringomyelia are unknown. It has been demonstrated that cerebrospinal fluid (CSF) normally flows from the subarachnoid space through perivascular spaces and into the spinal cord central canal. The aim of this study was to investigate whether this flow continues during cyst formation in an animal model of syringomyelia and to determine the role of subarachnoid CSF flow in this model.MethodsThe intraparenchymal kaolin model of noncommunicating syringomyelia was established in 78 Sprague-Dawley rats. Horseradish peroxidase was used as a tracer to study CSF flow at 1 day, 3 days, 1 week, and 6 weeks after kaolin injection. CSF flow was studied at 0, 10, and 30 minutes after horseradish peroxidase injection into the cisterna magna or thoracic subarachnoid space.ResultsThe central canal became occluded at the level of the kaolin injection and at one or more rostral levels. Segments of the central canal isolated between occlusions gradually dilated, and axonal retraction balls were detected in the surrounding white matter. There was a partial blockage of subarachnoid CSF flow at the site of the kaolin injection, both in a rostral-caudal direction and in a caudal-rostral direction. Horseradish peroxidase was detected at all time points, in a distinctive pattern, in perivascular spaces and the central canal. This pattern was seen even where segments of the central canal were isolated and dilated.ConclusionIn this animal model, noncommunicating syringes continue to enlarge even when there is evidence that they are under high pressure. There may be an increase in pulse pressure rostral to the block of subarachnoid CSF flow, causing an increase in perivascular flow and contributing to syrinx formation. The source of fluid in noncommunicating syringomyelia may be arterial pulsation-dependent CSF flow from perivascular spaces into the central canal.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.