• J. Thorac. Cardiovasc. Surg. · Nov 2009

    Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency.

    • Harry A Dwyer, Peter B Matthews, Ali Azadani, Liang Ge, T Sloane Guy, and Elaine E Tseng.
    • Department of Mechanical and Aeronautic Engineering, University of California at Davis, Davis, CA, USA.
    • J. Thorac. Cardiovasc. Surg. 2009 Nov 1;138(5):1227-33.

    ObjectiveTranscatheter aortic valves have been successfully implanted into the calcified leaflets of patients with severe aortic stenosis. However, their stability in patients with noncalcified aortic insufficiency is unknown. Similar to thoracic and abdominal aortic stent grafts, transcatheter aortic valves are subjected to antegrade ejection forces during systole. However, retrograde migration forces into the left ventricle are also generated by the diastolic pressure gradient across the closed valve. It has been suggested that leaflet calcification anchors the prosthesis, and measurements of migration forces should be considered before clinical trials in noncalcified aortic insufficiency. The objective of this study was to use computational fluid dynamics simulations to quantify forces that could potentially dislodge the prosthesis.MethodsA computational fluid dynamics model was developed to simulate systolic flow through a geometric mesh of the aortic root and transcatheter aortic valves. Hemodynamic measurements were made at discrete moments during ejection. Unsteady control volume analysis was used for calculations of force on the mesh.ResultsResults of the simulation indicate that a total force of 0.602 N acts on the transcatheter aortic valves during systole, 99% of which is in the direction of axial flow. The largest contributor to force was the dynamic pressure gradient through the transcatheter aortic valves. This antegrade force is approximately 10 times smaller than the retrograde force (6.01 N) on the closed valve during diastole.ConclusionOur model simulated systolic flow through a transcatheter aortic valve and demonstrated migration into the left ventricle to be of greater concern than antegrade ejection.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.