• J Trauma Acute Care Surg · Jul 2013

    Multicenter Study

    Time-dependent prediction and evaluation of variable importance using superlearning in high-dimensional clinical data.

    • Alan Hubbard, Ivan Diaz Munoz, Anna Decker, John B Holcomb, Martin A Schreiber, Eileen M Bulger, Karen J Brasel, Erin E Fox, Deborah J del Junco, Charles E Wade, Mohammad H Rahbar, Bryan A Cotton, Herb A Phelan, John G Myers, Louis H Alarcon, Peter Muskat, Mitchell J Cohen, and PROMMTT Study Group.
    • School of Public Health, University of California-Berkeley, Berkeley, California 94720, USA. hubbard@berkeley.edu
    • J Trauma Acute Care Surg. 2013 Jul 1;75(1 Suppl 1):S53-60.

    BackgroundPrediction of outcome after injury is fraught with uncertainty and statistically beset by misspecified models. Single-time point regression only gives prediction and inference at one time, of dubious value for continuous prediction of ongoing bleeding. New statistical machine learning techniques such as SuperLearner (SL) exist to make superior prediction at iterative time points while evaluating the changing relative importance of each measured variable on an outcome. This then can provide continuously changing prediction of outcome and evaluation of which clinical variables likely drive a particular outcome.MethodsPROMMTT data were evaluated using both naive (standard stepwise logistic regression) and SL techniques to develop a time-dependent prediction of future mortality within discrete time intervals. We avoided both underfitting and overfitting using cross validation to select an optimal combination of predictors among candidate predictors/machine learning algorithms. SL was also used to produce interval-specific robust measures of variable importance measures (VIM resulting in an ordered list of variables, by time point) that have the strongest impact on future mortality.ResultsNine hundred eighty patients had complete clinical and outcome data and were included in the analysis. The prediction of ongoing transfusion with SL was superior to the naive approach for all time intervals (correlations of cross-validated predictions with the outcome were 0.819, 0.789, 0.792 for time intervals 30-90, 90-180, 180-360, >360 minutes). The estimated VIM of mortality also changed significantly at each time point.ConclusionThe SL technique for prediction of outcome from a complex dynamic multivariate data set is superior at each time interval to standard models. In addition, the SL VIM at each time point provides insight into the time-specific drivers of future outcome, patient trajectory, and targets for clinical intervention. Thus, this automated approach mimics clinical practice, changing form and content through time to optimize the accuracy of the prognosis based on the evolving trajectory of the patient.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.