• Pain · Dec 1996

    Neuronal model of tactile allodynia produced by spinal strychnine: effects of excitatory amino acid receptor antagonists and a mu-opiate receptor agonist.

    • L S Sorkin and S Puig.
    • Anesthesiology Research Laboratory, University of California, San Diego 92093-0818, USA. lsorkin@ucsd.edu
    • Pain. 1996 Dec 1;68(2-3):283-92.

    AbstractTouch evoked agitation (allodynia) can be induced by spinal delivery of strychnine and this effect is antagonized by intrathecal NMDA and non-NMDA receptor antagonists, but not by mu-opiate receptor agonists. In this study, we sought to characterize the effect of focal glycine-receptor inhibition on spontaneous and evoked activity in dorsal horn neurons of the chloralose-anesthetized cat. Strychnine (1 mM) applied near the neurons through a dialysis fiber caused an enhanced response to hair deflection, enlargement of the low threshold receptive fields and in some cells, an increase in afterdischarge. These changes were observed only in cells that were activated by both hair deflection and high intensity mechanical stimulation. Subsequent co-administration of an NMDA receptor antagonist (AP-7, 2.0 mM) preferentially blocked strychnine-associated effects without changing the original receptive field characteristics. Co-administration of a non-NMDA excitatory amino acid receptor antagonist (CNQX, 1 mM) with the strychnine served to block low (brush) and high intensity (pinch) afferent input. In contrast, addition of a mu-opiate receptor agonist (alfentanil 2.4 mM) to the strychnine perfusate selectively reduced responsiveness to high intensity stimulation, while having no effect on the exaggerated response to hair deflection. Given the functional and pharmacological similarity of the effects of spinal strychnine to post-nerve injury states in man, disinhibition due to a loss of glycinergic input may be associated with large myelinated fiber-mediated nociceptive states. Consistent with these data is the contention that under normal circumstances, afferent hair follicle input onto convergent neurons is regulated by a tonic glycinergic circuit. Removal of this regulatory influence leads to a magnification of low threshold tactile throughput in dorsal horn. This model may help to provide pharmacological insights into more efficacious treatments for such pain states that are relatively refractory to opioid therapies.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…