• Int. J. Dev. Neurosci. · Feb 2005

    Comparative Study

    Maturation of cultured hippocampal slices results in increased excitability in granule cells.

    • Markus M Lindroos, Sanna L Soini, Tiina-Kaisa Kukko-Lukjanov, Esa R Korpi, David Lovinger, and Irma E Holopainen.
    • Department of Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FIN-20520 Turku, Finland.
    • Int. J. Dev. Neurosci. 2005 Feb 1;23(1):65-73.

    AbstractThe preparation of hippocampal slices results in loss of input neurons to dentate granule cells, which leads to the reorganization of their axons, the mossy fibers, and alters their functional properties in long-term cultures, but its temporal aspects in the immature hippocampus are not known. In this study, we have focused on the early phase of this plastic reorganization process by analyzing granule cell function with field potential and whole cell recordings during the in vitro maturation of hippocampal slices (from 1 to 17 days in vitro, prepared from 6 to 7-day-old rats), and their morphology using extracellular biocytin labelling technique. Acute slices from postnatal 14-22-day-old rats were analyzed to detect any differences in the functional properties of granule cells in these two preparations. In field potential recordings, small synaptically-evoked responses were detected at 2 days in vitro, and their amplitude increased during the culture time. Whole cell voltage clamp recordings revealed intensive spontaneous excitatory postsynaptic currents, and the susceptibility to stimulus-evoked bursting increased with culture time. In acutely prepared slices, neither synaptically-evoked responses in field potential recordings nor any bursting in whole cell recordings were detected. The excitatory activity was under the inhibitory control of gamma-aminobutyric acid type A receptor. Extracellularily applied biocytin labelled dentate granule cells, and revealed sprouting and aberrant targeting of mossy fibers in cultured slices. Our results suggest that reorganization of granule cell axons takes place during the early in vitro maturation of hippocampal slices, and contributes to their increased excitatory activity resembling that in the epileptic hippocampus. Cultured immature hippocampal slices could thus serve as an additional in vitro model to elucidate mechanisms of synaptic plasticity and cellular reactivity in response to external damage in the developing hippocampus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.