• J. Am. Coll. Surg. · May 2009

    Randomized Controlled Trial

    Closed loop control of inspired oxygen concentration in trauma patients.

    • Jay A Johannigman, Richard D Branson, and Michael G Edwards.
    • Department of Surgery, University of Cincinnati, Cincinnati, OH 45267-0558, USA. jay.johannigman@uc.edu
    • J. Am. Coll. Surg. 2009 May 1;208(5):763-8; discussion 768-9.

    BackgroundTransport of mechanically ventilated patients in a combat zone presents challenges, including conservation of resources. In the battlefield setting, provision of oxygen supplies remains an important issue. Autonomous control of oxygen concentration can allow a reduction in oxygen usage and reduced mission weight.MethodsTrauma patients requiring ventilation and inspired oxygen concentration (FIO(2)) > 0.40 were evaluated for study. Patients were randomized to consecutive 4-hour periods of closed loop control or standard care. The system for autonomous control consisted of a ventilator, oximeter, and a portable computer. The computer housed the control algorithm and collected data every 5 seconds. The controller goal was to maintain pulse oximetry (SpO(2)) at 94 +/- 2% through discrete changes of 1% to 5% every 30 seconds. Ventilator settings and SpO(2) were recorded every 5 seconds for analysis.ResultsForty-five patients were enrolled in this study. Oxygen saturation was maintained in the 92% to 96% saturation range 33 +/- 36% of the time during clinician control versus 83 +/- 21% during closed loop control. Time spent at the target SpO(2) 92% to 96% was 193.3 +/- 59.18 minutes during closed loop control and 87.08 +/- 87.95 minutes during clinician control (p < 0.001). Hyperoxemia was more frequent during clinician control (144.29 +/- 90.09 minutes) than during closed loop control (38.91 +/- 55.86 minutes; p < 0.001). There were no differences in the number of episodes of SpO(2) < 88%. Oxygen usage was reduced by 32% during closed loop control.ConclusionClosed loop control of FIO(2) offers the opportunity for maximizing oxygen resources, reducing mission weight, and providing targeted normoxemia without increasing risk of hypoxemia in ventilated trauma patients.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.