• Method Inform Med · May 2016

    Success/Failure Prediction of Noninvasive Mechanical Ventilation in Intensive Care Units*. Using Multiclassifiers and Feature Selection Methods.

    • Félix Martín-González, Javier González-Robledo, Fernando Sánchez-Hernández, and María N Moreno-García.
    • María N. Moreno-García, University of Salamanca, Department of Computing and Automation, Plaza de los Caídos s/n, 37008 Salamanca, Spain, E-mail: mmg@usal.es.
    • Method Inform Med. 2016 May 17; 55 (3): 234-41.

    ObjectivesThis paper addresses the problem of decision-making in relation to the administration of noninvasive mechanical ventilation (NIMV) in intensive care units.MethodsData mining methods were employed to find out the factors influencing the success/failure of NIMV and to predict its results in future patients. These artificial intelligence-based methods have not been applied in this field in spite of the good results obtained in other medical areas.ResultsFeature selection methods provided the most influential variables in the success/failure of NIMV, such as NIMV hours, PaCO2 at the start, PaO2 / FiO2 ratio at the start, hematocrit at the start or PaO2 / FiO2 ratio after two hours. These methods were also used in the preprocessing step with the aim of improving the results of the classifiers. The algorithms provided the best results when the dataset used as input was the one containing the attributes selected with the CFS method.ConclusionsData mining methods can be successfully applied to determine the most influential factors in the success/failure of NIMV and also to predict NIMV results in future patients. The results provided by classifiers can be improved by preprocessing the data with feature selection techniques.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.