• J. Neurosci. · Feb 2002

    Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death.

    • Richard H Singleton, Jiepei Zhu, James R Stone, and John T Povlishock.
    • Departments of Anatomy and Anesthesiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
    • J. Neurosci. 2002 Feb 1;22(3):791-802.

    AbstractTraumatic axonal injury (TAI), a consequence of traumatic brain injury (TBI), results from progressive pathologic processes initiated at the time of injury. Studies attempting to characterize the pathology associated with TAI have not succeeded in following damaged and/or disconnected axonal segments back to their individual neuronal somata to determine their fate. To address this issue, 71 adult male Sprague Dawley rats were subjected to moderate central fluid percussion injury and killed between 30 min and 7 d after injury. Antibodies to the C terminus of beta-amyloid precursor protein (APP) identified TAI in continuity with individual neuronal somata in the mediodorsal neocortex, the hilus of the dentate gyrus, and the dorsolateral thalamus. These somata were followed with immunocytochemical markers of neuronal injury targeting phosphorylated 200 kDa neurofilaments (RMO-24), altered protein translation (phosphorylated eukaryotic translation initiation factor 2 alpha), and cell death [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)], with parallel electron microscopic (EM) assessment. Despite the finding of TAI within 20-50 micrometer of the soma, no evidence of cell death, long associated with proximal axotomy, was seen via TUNEL or routine light microscopy/electron microscopy. Rather, there was rapid onset (<6 hr after injury) subcellular change associated with impaired protein synthesis identified by EM, immunocytochemical, and Western blot analyses. When followed 7 d after injury, these abnormalities did not reveal dramatic progression. Rather, some somata showed evidence of potential reorganization and repair. This study demonstrates a novel somatic response to TAI in the perisomatic domain and also provides insight into the multifaceted pathology associated with TBI.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.