-
Randomized Controlled Trial
Soluble RAGE and the RAGE Ligands HMGB1 and S100A12 in Critical Illness: Impact of Glycemic Control with Insulin and Relation with Clinical Outcome.
- Catherine Ingels, Inge Derese, Pieter J Wouters, Greet Van den Berghe, and Ilse Vanhorebeek.
- Clinical Department and Laboratory of Intensive Care Medicine, Division Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Shock. 2015 Feb 1; 43 (2): 109-16.
AbstractSystemic inflammation often leads to complications in critically ill patients. Activation of the receptor for advanced glycation end-products (RAGE) generates inflammatory cytokines, proteases, and oxidative stress and may link inflammation to subsequent organ damage. Furthermore, hyperglycemia-induced oxidative stress increases RAGE ligands and RAGE expression. We hypothesized that preventing hyperglycemia during critical illness reduces the risk of excessively enhanced RAGE signaling, which could relate to clinical outcomes and risk of death. In 405 long-stay surgical intensive care unit patients randomized to intensive or conventional insulin treatment, serum concentrations of soluble RAGE (decoy receptor) and the RAGE ligands high-mobility group box 1 (HMGB1) and S100A12 were measured on admission, day 7, and last day. These were compared with levels in 71 matched control subjects and with C-reactive protein (CRP) as a routinely monitored inflammation marker. On admission, soluble RAGE, HMGB1, S100A12, and CRP were higher in patients than in controls. The HMGB1, S100A12, and CRP remained elevated throughout intensive care unit stay, whereas soluble RAGE decreased to levels lower than in controls by day 7. Unexpectedly, insulin treatment did not affect the circulating levels of these markers. In univariable analysis, elevated levels of soluble RAGE on admission were associated with adverse outcome, including circulatory failure, kidney failure, liver dysfunction, and mortality. The associations with circulatory and kidney failure remained significant in multivariable logistic regression analysis corrected for baseline risk factors. Critical illness affects components of RAGE signaling, unaffected by insulin treatment. Elevated on-admission soluble RAGE was associated with adverse outcomes.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.