-
Clinical Trial
Effect of experimental muscle pain on motor unit firing rate and conduction velocity.
- Dario Farina, Lars Arendt-Nielsen, Roberto Merletti, and Thomas Graven-Nielsen.
- Centro di Bioingegneria, Dipartimento di Elettronica, Politecnico di Torino, 10129 Turin, Italy.
- J. Neurophysiol. 2004 Mar 1;91(3):1250-9.
AbstractThe aim of this human study was to investigate the relationship between experimentally induced muscle pain intensity (i.e., amount of nociceptive activity) and motor unit (MU) firing decrease and MU conduction velocity (CV). In 12 healthy subjects, nociceptive afferents were stimulated in the right tibialis anterior muscle by three intramuscular injections of hypertonic saline (0.2, 0.5, and 0.9 ml) separated by 140 s. The subjects performed six isometric contractions (20 s long) at 10% of the maximal voluntary contraction during the experimental muscle pain. The same set of six contractions was performed without any infusion before the painful condition on the right leg. The procedure was repeated for the left leg with infusion of isotonic (nonpainful) saline. Intramuscular and surface electromyographic (EMG) signals were collected to assess MU firing rate and CV. The firing rate of the active MUs [range: 7.4-14.8 pulses/s (pps)] did not change significantly in the three control conditions (without infusion for the right and left leg and with infusion of isotonic saline in the left leg). There was, on the contrary, a significant decrease (on average, mean +/- SE, 1.03 +/- 0.21 pps) of the firing rates during the painful condition. Moreover, MU firing rates were inversely significantly correlated with the subjective scores of pain intensity. Single MU CV was 3.88 +/- 0.03 m/s (mean +/- SE, over all the MUs) with no statistical difference among any condition, i.e., the injection of hypertonic saline did not alter the muscle fiber membrane properties of the observed MUs. Progressively increased muscle pain intensity causes a gradual decrease of MU firing rates. This decrease is not associated with a change in MU membrane properties, indirectly assessed by CV. This study demonstrates a central inhibitory motor control mechanism with an efficacy correlated to the nociceptive activity.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.