• Am. J. Physiol. Gastrointest. Liver Physiol. · May 2008

    Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia.

    • Walter E B Sipe, Stuart M Brierley, Christopher M Martin, Benjamin D Phillis, Francisco Bautista Cruz, Eileen F Grady, Wolfgang Liedtke, David M Cohen, Stephen Vanner, L Ashley Blackshaw, and Nigel W Bunnett.
    • Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143-0660, USA.
    • Am. J. Physiol. Gastrointest. Liver Physiol. 2008 May 1;294(5):G1288-98.

    AbstractProtease-activated receptor (PAR(2)) is expressed by nociceptive neurons and activated during inflammation by proteases from mast cells, the intestinal lumen, and the circulation. Agonists of PAR(2) cause hyperexcitability of intestinal sensory neurons and hyperalgesia to distensive stimuli by unknown mechanisms. We evaluated the role of the transient receptor potential vanilloid 4 (TRPV4) in PAR(2)-induced mechanical hyperalgesia of the mouse colon. Colonic sensory neurons, identified by retrograde tracing, expressed immunoreactive TRPV4, PAR(2), and calcitonin gene-related peptide and are thus implicated in nociception. To assess nociception, visceromotor responses (VMR) to colorectal distension (CRD) were measured by electromyography of abdominal muscles. In TRPV4(+/+) mice, intraluminal PAR(2) activating peptide (PAR(2)-AP) exacerbated VMR to graded CRD from 6-24 h, indicative of mechanical hyperalgesia. PAR(2)-induced hyperalgesia was not observed in TRPV4(-/-) mice. PAR(2)-AP evoked discharge of action potentials from colonic afferent neurons in TRPV4(+/+) mice, but not from TRPV4(-/-) mice. The TRPV4 agonists 5',6'-epoxyeicosatrienoic acid and 4alpha-phorbol 12,13-didecanoate stimulated discharge of action potentials in colonic afferent fibers and enhanced current responses recorded from retrogradely labeled colonic dorsal root ganglia neurons, confirming expression of functional TRPV4. PAR(2)-AP enhanced these responses, indicating sensitization of TRPV4. Thus TRPV4 is expressed by primary spinal afferent neurons innervating the colon. Activation of PAR(2) increases currents in these neurons, evokes discharge of action potentials from colonic afferent fibers, and induces mechanical hyperalgesia. These responses require the presence of functional TRPV4. Therefore, TRPV4 is required for PAR(2)-induced mechanical hyperalgesia and excitation of colonic afferent neurons.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.