• Neurosurgery · Oct 1997

    Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications.

    • P M Black, T Moriarty, E Alexander, P Stieg, E J Woodard, P L Gleason, C H Martin, R Kikinis, R B Schwartz, and F A Jolesz.
    • Division of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.
    • Neurosurgery. 1997 Oct 1; 41 (4): 831-42; discussion 842-5.

    ObjectiveWe describe the development and implementation of a new open configuration magnetic resonance imaging (MRI) system, with which neurosurgical procedures can be performed using image guidance. Our initial neurosurgical experience consists of 140 cases, including 63 stereotactic biopsies, 16 cyst drainages, 55 craniotomies, 3 thermal ablations, and 3 laminectomies. The surgical advantages derived from this new modality are presented.MethodsThe 0.5-T intraoperative MRI system (SIGNA SP, Boston, MA), developed by General Electric Medical Systems in collaboration with the Brigham and Women's Hospital, has a vertical gap within its magnet, providing the physical space for surgery. Images are viewed on monitors located within this gap and can also be acquired in conjunction with optical tracking of surgical instruments, establishing accurate intraoperative correlations between instrument position and anatomic structures.ResultsA wide range of standard neurosurgical procedures can be performed using intraoperative MRI. The images obtained are clear and provide accurate and immediate information to use in the planning and assessment of the progress of the surgery.ConclusionIntraoperative MRI allows lesions to be precisely localized and targeted, and the progress of a procedure can be immediately evaluated. The constantly updated images help to eliminate errors that can arise during frame-based and frameless stereotactic surgery when anatomic structures alter their position because of shifting or displacement of brain parenchyma but are correlated with images obtained preoperatively. Intraoperative MRI is particularly helpful in determining tumor margins, optimizing surgical approaches, achieving complete resection of intracerebral lesions, and monitoring potential intraoperative complications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.