• Int J Med Inform · Jul 2010

    An analysis of clinical queries in an electronic health record search utility.

    • Karthik Natarajan, Daniel Stein, Samat Jain, and Noémie Elhadad.
    • Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA. karthik.natarajan@dbmi.columbia.edu
    • Int J Med Inform. 2010 Jul 1; 79 (7): 515-22.

    PurposeWhile search engines have become nearly ubiquitous on the Web, electronic health records (EHRs) generally lack search functionality; furthermore, there is no knowledge on how and what healthcare providers search while using an EHR-based search utility. In this study, we sought to understand user needs as captured by their search queries.MethodsThis post-implementation study analyzed user search log files for 6 months from an EHR-based, free-text search utility at our large academic institution. The search logs were de-identified and then analyzed in two steps. First, two investigators classified all the unique queries as navigational, transactional, or informational searches. Second, three physician reviewers categorized a random sample of 357 informational searches into high-level semantic types derived from the Unified Medical Language System (UMLS). The reviewers were given overlapping data sets, such that two physicians reviewed each query.ResultsWe analyzed 2207 queries performed by 436 unique users over a 6-month period. Of the 2207 queries, 980 were unique queries. Users of the search utility included clinicians, researchers and administrative staff. Across the whole user population, approximately 14.5% of the user searches were navigational searches and 85.1% were informational. Within informational searches, we found that users predominantly searched for laboratory results and specific diseases.ConclusionsA variety of user types, ranging from clinicians to administrative staff, took advantage of the EHR-based search utility. Though these users' search behavior differed, they predominantly performed informational searches related to laboratory results and specific diseases. Additionally, a number of queries were part of words, implying the need for a free-text module to be included in any future concept-based search algorithm.2010 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…