• Br J Anaesth · Mar 2015

    Non-invasive measurement of cardiac output using an iterative, respiratory-based method.

    • M Klein, L Minkovich, M Machina, M Selzner, V N Spetzler, J M Knaak, D Roy, J Duffin, and J A Fisher.
    • Department of Physiology, University of Toronto, Toronto, Ontario, Canada Thornhill Research Inc., Toronto, Ontario, Canada.
    • Br J Anaesth. 2015 Mar 1; 114 (3): 406-13.

    BackgroundCurrent non-invasive respiratory-based methods of measuring cardiac output [Formula: see text] make doubtful assumptions and encounter significant technical difficulties. We present a new method using an iterative approach [Formula: see text], which overcomes limitations of previous methods.MethodsSequential gas delivery (SGD) is used to control alveolar ventilation [Formula: see text] and CO2 elimination [Formula: see text] during a continuous series of iterative tests. Each test consists of four breaths where inspired CO2 [Formula: see text] is controlled; raising end-tidal Pco2 [Formula: see text] by about 1.33 kPa (10 mm Hg) for the first breath, and then maintaining [Formula: see text] constant for the next three breaths. The [Formula: see text] required to maintain [Formula: see text] constant is calculated using the differential Fick equation (DFE), where [Formula: see text] is the only unknown and is arbitrarily assumed for the first iteration. Each subsequent iteration generates measures used for calculating [Formula: see text] by the DFE, refining the assumption of [Formula: see text] for the next test and converging it to the true [Formula: see text] when [Formula: see text] remains constant during the four test breaths. We compared [Formula: see text] with [Formula: see text] measured by bolus pulmonary artery thermodilution [Formula: see text] in seven pigs undergoing liver transplantation.Results[Formula: see text] implementation and analysis was fully automated, and [Formula: see text] varied from 0.6 to 5.4 litre min(-1) through the experiments. The bias (between [Formula: see text] and [Formula: see text]) was 0.2 litre min(-1) with 95% limit of agreement from -1.1 to 0.7 litre min(-1) and percentage of error of 32%. During acute changes of [Formula: see text], convergence of [Formula: see text] to actual [Formula: see text] required only three subsequent iterations.Conclusions[Formula: see text] measurement is capable of providing an automated semi-continuous non-invasive measure of [Formula: see text].© The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…