• Biomaterials · Jun 1996

    Finite element determination of the forces exerted by endotracheal tubes on the upper airways.

    • B Gustin, C G'Sell, B Cochelin, P Wourms, and M Potier-Ferry.
    • Laboratoire de Métallurgie Physique et Sciences des Matériaux, URA CNRS 155, Ecole des Mines de Nancy, France.
    • Biomaterials. 1996 Jun 1; 17 (12): 1219-25.

    AbstractAccidents occurring during intubations often originate in the mechanical interaction between the tube and the upper airways. A review of these accidents, including their possible complications, shows that they are mainly due to the forces exerted by the tube on the anatomical structures during the long intubation periods. The structural design of currently available tubes is presented, and the viscoelastic properties of the constituent PVC materials are analysed. It is shown how the long-term viscoelastic behaviour of the polymer can be assessed from accelerated relaxation tests in uniaxial tension at temperatures higher than the body temperature and how the variation in the relaxation modulus can be modelled through a simple constitutive equation with a minimum number of parameters. From these data, the mechanical interaction of the tubes with the trachea are computed by means of the finite element method. The relative efficiency of different types of endotracheal tubes is thus discussed and operational criteria are eventually defined for the choice of tubes in clinical situations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.