• Biomaterials · Sep 2012

    The upregulation of specific interleukin (IL) receptor antagonists and paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion.

    • Lohitash Karumbaiah, Sharon E Norman, Nithish B Rajan, Sanjay Anand, Tarun Saxena, Martha Betancur, Radhika Patkar, and Ravi V Bellamkonda.
    • Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University School of Medicine, Atlanta, 313 Ferst Drive, GA 30332-0535, USA.
    • Biomaterials. 2012 Sep 1; 33 (26): 5983-96.

    AbstractThe high mechanical mismatch between stiffness of silicon and metal microelectrodes and soft cortical tissue, induces strain at the neural interface which likely contributes to failure of the neural interface. However, little is known about the molecular outcomes of electrode induced low-magnitude strain (1-5%) on primary astrocytes, microglia and neurons. In this study we simulated brain micromotion at the electrode-brain interface by subjecting astrocytes, microglia and primary cortical neurons to low-magnitude cyclical strain using a biaxial stretch device, and investigated the molecular outcomes of induced strain in vitro. In addition, we explored the functional consequence of astrocytic and microglial strain on neural health, when they are themselves subjected to strain. Quantitative real-time PCR array (qRT-PCR Array) analysis of stretched astrocytes and microglia showed strain specific upregulation of an Interleukin receptor antagonist - IL-36Ra (previously IL-1F5), to ≈ 1018 and ≈ 236 fold respectively. Further, IL-36Ra gene expression remained unchanged in astrocytes and microglia treated with bacterial lipopolysaccharide (LPS) indicating that the observed upregulation in stretched astrocytes and microglia is potentially strain specific. Zymogram and western blot analysis revealed that mechanically strained astrocytes and microglia upregulated matrix metalloproteinases (MMPs) 2 and 9, and other markers of reactive gliosis such as glial fibrillary acidic protein (GFAP) and neurocan when compared to controls. Primary cortical neurons when stretched with and without IL-36Ra, showed a ≈ 400 fold downregulation of tumor necrosis factor receptor superfamily, member 11b (TNFRSF11b). Significant upregulation of members of the caspase cysteine proteinase family and other pro-apoptotic genes was also observed in the presence of IL-36Ra than in the absence of IL-36Ra. Adult rats when implanted with microwire electrodes showed upregulation of IL-36Ra (≈ 20 fold) and IL-1Ra (≈ 1500 fold) 3 days post-implantation (3 DPI), corroborating in vitro results, although these transcripts were drastically down regulated by ≈ 20 fold and ≈ 1488 fold relative to expression levels 3 DPI, at the end of 12 weeks post-implantation (12 WPI). These results demonstrate that IL receptor antagonists may be negatively contributing to neuronal health at acute time-points post-electrode implantation.Copyright © 2012 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.