-
J Trauma Acute Care Surg · Oct 2013
Let technology do the work: Improving prediction of massive transfusion with the aid of a smartphone application.
- Michael Joseph Mina, Anne M Winkler, and Christopher J Dente.
- From the Departments of Surgery (M.J.M., C.J.D.), and Pathology and Laboratory Medicine (A.M.W.), School of Medicine, Grady Memorial Hospital, and the Rollins School of Public Health (M.J.M.), Emory University; and the Emory Medical Scientist Training Program (M.J.M), Atlanta, Georgia.
- J Trauma Acute Care Surg. 2013 Oct 1; 75 (4): 669-75.
BackgroundThe use of massive transfusion protocols (MTPs) is now common in civilian trauma settings, and early activation of MTP has been shown to increase survival of MTP recipients. Numerous MTP prediction tools have been developed; however, they are often cumbersome to use efficiently or have traded predictive power for ease of use. We hypothesized that a highly accurate predictor of massive transfusion could be created and incorporated into a smartphone application that would provide an additional tool for clinicians to use in directing the resuscitation of critically injured patients.MethodsData from all trauma admissions since the inception of MTP were put in place at Grady Memorial Hospital in Atlanta, Georgia, were collected. A predictive model was developed using the least absolute shrinkage and selection operator (LASSO) and 10-fold cross validation. Data were resampled over 500 iterations, each using a unique and random subset of 80% of the data for model training and 20% for validation.ResultsThe trauma registry contained 13,961 cases between 2007 and November 2011, of which 10,900 were complete and 394 received MTP. Of 44 input terms, only the mechanism of injury, heart rate, systolic blood pressure, and base deficit were found to be important predictors of massive transfusion. Our model has an area under the receiver operating curve of 0.96 (against data not used during model training) and accurately predicted MTP status for 97% of all patients. The model accurately discriminated full MTPs from MTP activations that did not meet criteria for massive transfusion. While complex to calculate by hand, our model has been packaged into a mobile application, allowing for efficient use while minimizing potential for user error.ConclusionWe have developed a highly accurate model for the prediction of massive transfusion that has potential to be easily accessed and used within a simple and efficient mobile application for smartphones.Level Of EvidencePrognostic/epidemiologic study, level III.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.