• Stroke · Jan 2012

    Potential of early [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography for identifying hypoperfusion and predicting fate of tissue in a rat embolic stroke model.

    • Maureen Walberer, Heiko Backes, Maria A Rueger, Bernd Neumaier, Heike Endepols, Mathias Hoehn, Gereon R Fink, Michael Schroeter, and Rudolf Graf.
    • Department of Neurology, University Hospital, Cologne, Germany.
    • Stroke. 2012 Jan 1; 43 (1): 193-8.

    Background And PurposeExperimental stroke models are essential to study in vivo pathophysiological processes of focal cerebral ischemia. In this study, an embolic stroke model in rats was applied (1) to characterize early development of regional cerebral blood flow and metabolism with positron emission tomography (PET) using [(15)O]H(2)O and [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG); and (2) to identify potential parameters for predicting tissue fate.MethodsRemote occlusion of the middle cerebral artery was induced in 10 Wistar rats by injection of 4 TiO(2) macrospheres. Sequential [(15)O]H(2)O-PET (baseline, 5, 30, 60 minutes after middle cerebral artery occlusion) and FDG-PET measurements (75 minutes after middle cerebral artery occlusion) were performed. [(15)O]H(2)O-PET data and FDG kinetic parameters were compared with MRIs and histology at 24 hours.ResultsRegional cerebral blood flow decreased substantially within 30 minutes after middle cerebral artery occlusion (41% to 58% of baseline regional cerebral blood flow; P<0.001) with no relevant changes between 30 and 60 minutes. At 60 minutes, regional cerebral blood flow correlated well with the unidirectional transport parameter K1 of FDG in all animals (r=0.86±0.09; P<0.001). Tissue fate could be accurately predicted taking into account K1 and net influx rate constant Ki of FDG. The infarct volume predicted by FDG-PET (375.8±102.3 mm(3)) correlated significantly with the infarct size determined by MRI after 24 hours (360.8±93.7 mm(3); r=0.85).ConclusionsHypoperfused tissue can be identified by decreased K1 of FDG. Acute ischemic tissue can be well characterized using K1 and Ki allowing for discrimination between infarct core and early viable tissue. Because FDG-PET is widely spread, our findings can be easily translated into clinical application for early diagnoses of ischemia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…