• Anesthesia and analgesia · Oct 2008

    The effect of injectate conductivity on the electric field with the nerve stimulator needle: a computer simulation.

    • Ari Ercole.
    • Department of Anaesthesia, Box 93, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK. ae105@cam.ac.uk
    • Anesth. Analg. 2008 Oct 1; 107 (4): 1427-32.

    BackgroundElectrical neural stimulation is commonly used to localize neural structures and place local anesthetic for regional anesthesia. The sharp tip of the stimulating needle gives rise to an electric field which is highly localized. The electrostatic effect of the injected solution on the field distribution and strength has not previously been modeled.MethodsThe three-dimensional electric field around a 0.7 mm diameter, un-insulated, hollow needle with a 30 degrees bevel was calculated in silico using a hybrid finite difference/impedance network method to solve the Laplace equation. The surrounding tissue was assumed to be electrically uniform. A sphere of injectate centered on the bevel was modeled as a region of conductivity differing from that of the bulk tissue.ResultsThe electric field strength was highly concentrated at the needle tip and decayed rapidly with distance r approximately as 1/r1.7. It was demonstrated that the electric field in the immediate vicinity of the needle tip was greatly reduced in the presence of solutions with conductivity greater than that of the surrounding tissue. A 1.5 mm radius region of conducting solution (equivalent to saline or local anesthetics) reduced the field by 31%. The same volume of a relatively insulating injectate, such as dextrose solution, led to a field enhancement of approximately 15%.ConclusionsThe electric field magnitude in the vicinity of the needle tip decayed more slowly with distance than predicted by Coulomb's law. This was independent of the presence of injectate. The near instantaneous abolition of muscle twitch with injection of small volumes of local anesthetic is consistent with an electrostatic effect, rather than a pharmacological or mechanical one. The change in field strength depended upon the volume of the injectate and its conductivity relative to that of the surrounding tissue. In this simulation, even tiny volumes of injectate lead to significant changes in field and therefore threshold current, which may have clinical implications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…