• Crit Care · Jan 2015

    Comparative Study Observational Study

    Point accuracy and reliability of an interstitial continuous glucose monitoring device in critically ill patients: a prospective study.

    • Roosmarijn T M van Hooijdonk, Jan Hendrik Leopold, Tineke Winters, Jan M Binnekade, Nicole P Juffermans, Janneke Horn, Johan C Fischer, Edmée C van Dongen-Lases, and Marcus J Schultz.
    • Department of Intensive Care, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. r.t.vanhooijdonk@amc.uva.nl.
    • Crit Care. 2015 Jan 1;19:34.

    IntroductionThere is a need for continuous glucose monitoring in critically ill patients. The objective of this trial was to determine the point accuracy and reliability of a device designed for continuous monitoring of interstitial glucose levels in intensive care unit patients.MethodsWe evaluated point accuracy by comparing device readings with glucose measurements in arterial blood by using blood gas analyzers. Analytical and clinical accuracy was expressed in Bland-Altman plots, glucose prediction errors, and Clarke error grids. We used a linear mixed model to determine which factors affect the point accuracy. In addition, we determined the reliability, including duration of device start-up and calibration, skips in data acquisition, and premature disconnections of sensors.ResultsWe included 50 patients in whom we used 105 sensors. Five patients from whom we could not collect the predefined minimum number of four consecutive comparative blood draws were excluded from the point accuracy analysis. Therefore, we had 929 comparative samples from 100 sensors in 45 patients (11 (7 to 28) samples per patient) during 4,639 hours (46 (27 to 134) hours per patient and 46 (21 to 69) hours per sensor) for the accuracy analysis. Point accuracy did not meet the International Organization for Standardization (ISO) 14971 standard for insulin dosing accuracy but did improve with increasing numbers of calibrations and was better in patients who did not have a history of diabetes. Out of 105 sensors, 60 were removed prematurely for a variety of reasons. The device start-up time was 49 (43 to 58) minutes. The number of skips in data acquisition was low, resulting in availability of real-time data during 95% (89% to 98%) of the connection time per sensor.ConclusionsThe point accuracy of a device designed for continuous real-time monitoring of interstitial glucose levels was relatively low in critically ill patients. The device had few downtimes, but one third of the sensors were removed prematurely because of unresolved sensor- or device-related problems.Trial RegistrationNetherlands Trial Registry number: NTR3827 . Registered 30 January 2013.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…