• Emerg Med J · Apr 2009

    Predicting patient arrivals to an accident and emergency department.

    • S W M Au-Yeung, U Harder, E J McCoy, and W J Knottenbelt.
    • Department of Computing, Imperial College London, London, UK. swa02@doc.ic.ac.uk
    • Emerg Med J. 2009 Apr 1; 26 (4): 241-4.

    ObjectivesTo characterise and forecast daily patient arrivals into an accident and emergency (A&E) department based on previous arrivals data.MethodsArrivals between 1 April 2002 and 31 March 2007 to a busy case study A&E department were allocated to one of two arrival streams (walk-in or ambulance) by mode of arrival and then aggregated by day. Using the first 4 years of patient arrival data as a "training" set, a structural time series (ST) model was fitted to characterise each arrival stream. These models were used to forecast walk-in and ambulance arrivals for 1-7 days ahead and then compared with the observed arrivals given by the remaining 1 year of "unseen" data.ResultsWalk-in arrivals exhibited a strong 7-day (weekly) seasonality, with ambulance arrivals showing a distinct but much weaker 7-day seasonality. The model forecasts for walk-in arrivals showed reasonable predictive power (r = 0.6205). However, the ambulance arrivals were harder to characterise (r = 0.2951).ConclusionsThe two separate arrival streams exhibit different statistical characteristics and so require separate time series models. It was only possible to accurately characterise and forecast walk-in arrivals; however, these model forecasts will still assist hospital managers at the case study hospital to best use the resources available and anticipate periods of high demand since walk-in arrivals account for the majority of arrivals into the A&E department.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…