-
- F Viana, E de la Peña, B Pecson, R F Schmidt, and C Belmonte.
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Apartado 18, San Juan de Alicante 03550, Spain. felix.viana@umh.es
- Eur. J. Neurosci. 2001 Feb 1; 13 (4): 722-34.
AbstractThe effects of hypo-osmotic membrane stretch on intracellular calcium concentration ([Ca(2+)](i)), cell volume and cellular excitability were investigated in cultured mouse primary sensory trigeminal neurons. Hypotonic solutions (15--45%) led to rapid cell swelling in all neurons. Swelling was accompanied by dose-dependent elevations in [Ca(2+)](i) in a large fraction of neurons. Responses could be classified into three categories. (i) In 57% of the neurons [Ca(2+)](i) responses had a slow rise time and were generally of small amplitude. (ii) In 21% of the neurons, responses had a faster rise and were larger in amplitude. (iii) The remaining cells (22%) did not show [Ca(2+)](i) responses to hypo-osmotic stretch. Slow and fast [Ca(2+)](i) changes were observed in trigeminal neurons of different sizes with variable responses to capsaicin (0.5 microM). The swelling-induced [Ca(2+)](i) responses were not abolished after depletion of intracellular Ca2+ stores with cyclopiazonic acid or preincubation in thapsigargin, but were suppressed in the absence of external Ca(2+). They were strongly attenuated by extracellular nickel and gadolinium. Hypotonic stimulation led to a decrease in input resistance and to membrane potential depolarization. Under voltage-clamp, the [Ca(2+)](i) elevation produced by hypotonic stimulation was accompanied by the development of an inward current and a conductance increase. The time course and amplitude of the [Ca(2+)](i) response to hypo-osmotic stimulation showed a close correlation with electrophysiological properties of the neurons. Fast [Ca(2+)](i) responses were characteristic of trigeminal neurons with short duration action potentials and marked inward rectification. These findings suggest that hypo-osmotic stimulation activates several Ca(2+)-influx pathways, including Gd(3+)-sensitive stretch-activated ion channels, in a large fraction of trigeminal ganglion neurons. Opening of voltage-gated Ca(2+) channels also contributes to the response. The pattern and rate of Ca(2+) influx may be correlated with functional subtypes of sensory neurons.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.