-
- Yongnan Zhu, Liang Sun, Alexander Garbarino, Carl Schmidt, Jinglong Fang, and Jian Chen.
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA. yongnan@umbc.edu.
- Bmc Bioinformatics. 2015 Jan 1; 16: 165.
BackgroundHigh-throughput methods are generating biological data on a vast scale. In many instances, genomic, transcriptomic, and proteomic data must be interpreted in the context of signaling and metabolic pathways to yield testable hypotheses. Since humans can interpret visual information rapidly, a means for interactive visual exploration that lets biologists interpret such data in a comprehensive and exploratory manner would be invaluable. However, humans have limited memory capacity. Current visualization tools have limited viewing and manipulation capabilities to address complex data analysis problems, and visual exploratory tools are needed to reduce the high mental workload imposed on biologists.ResultsWe present PathRings, a new interactive web-based, scalable biological pathway visualization tool for biologists to explore and interpret biological pathways. PathRings integrates metabolic and signaling pathways from Reactome in a single compound graph visualization, and uses color to highlight genes and pathways affected by input data. Pathways are available for multiple species and analysis of user-defined species or input is also possible. PathRings permits an overview of the impact of gene expression data on all pathways to facilitate visual pattern finding. Detailed pathways information can be opened in new visualizations while maintaining the overview, that form a visual exploration provenance. A dynamic multi-view bubbles interface is designed to support biologists' analytical tasks by letting users construct incremental views that further reflect biologists' analytical process. This approach decomposes complex tasks into simpler ones and automates multi-view management.ConclusionsPathRings has been designed to accommodate interactive visual analysis of experimental data in the context of pathways defined by Reactome. Our new approach to interface design can effectively support comparative tasks over substantially larger collection than existing tools. The dynamic interaction among multi-view dataset visualization improves the data exploration. PathRings is available free at http://raven.anr.udel.edu/~sunliang/PathRings and the source code is hosted on Github: https://github.com/ivcl/PathRings .
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.