• The Journal of physiology · Jul 2011

    Comparative Study

    Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca²⁺ channel blockade.

    • Yu-Chieh Tzeng, Gregory S H Chan, Christopher K Willie, and Philip N Ainslie.
    • Cardiovascular Systems Laboratory, Department of Surgery and Anaesthesia, University of Otago, Wellington, 23A Mein Street, PO Box 7343, Wellington South, New Zealand. shieak.tzeng@otago.ac.nz
    • J. Physiol. (Lond.). 2011 Jul 1; 589 (Pt 13): 3263-74.

    AbstractThe fundamental determinants of human dynamic cerebral autoregulation are poorly understood, particularly the role of vascular compliance and the myogenic response. We sought to 1) determine whether capacitive blood flow associated with vascular compliance and driven by the rate of change in mean arterial blood pressure (dMAP/dt) is an important determinant of middle cerebral artery velocity (MCAv) dynamics and 2) characterise the impact of myogenic blockade on these cerebral pressure-flow velocity relations in humans. We measured MCAv and mean arterial pressure (MAP) during oscillatory lower body negative pressure (n =8) at 0.10 and 0.05 Hz before and after cerebral Ca²⁺ channel blockade (nimodipine). Pressure-flow velocity relationships were characterised using transfer function analysis and a regression-based Windkessel analysis that incorporates MAP and dMAP/dt as predictors of MCAv dynamics. Results show that incorporation of dMAP/dt accounted for more MCAv variance (R² 0.80-0.99) than if only MAP was considered (R2 0.05-0.90). The capacitive gain relating dMAP/dt and MCAv was strongly correlated to transfer function gain (0.05 Hz, r =0.93, P<0.01; 0.10 Hz, r =0.91, P<0.01), but not to phase or coherence. Ca²⁺ channel blockade increased the conductive gain relation between MAP and MCAv (P<0.05), and reduced phase at 0.05 Hz (P<0.01). Capacitive and transfer function gain were unaltered. The findings suggest capacitive blood flow is an important determinant of cerebral haemodynamics that bears strong relations to some metrics of dynamic cerebral autoregulation derived from transfer function analysis, and that Ca²⁺ channel blockade enhances pressure-driven resistive blood flow but does not alter capacitive blood flow. the causes and effects of cerebrovascular diseases such as stroke and dementia.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.