• Eur. J. Neurosci. · Nov 1999

    Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice.

    • J L Velazquez and P L Carlen.
    • Playfair Neuroscience Unit, Toronto Western Hospital, 399 Bathurst Street, Ontario Canada. jlpv@playfair.utoronto.ca
    • Eur. J. Neurosci. 1999 Nov 1; 11 (11): 4110-8.

    AbstractWe studied the contribution of GABAergic (gamma-aminobutyric acid) neurotransmission to epileptiform activity using the horizontal hippocampal rat brain slice. Seizure-like (ictal) activity was evoked in the CA1 area by applying high-frequency trains (80 Hz for 2 s) to the Schaffer collaterals. Whole-cell recordings from stratum oriens-alveus interneurons revealed burst firing with superimposed high-frequency spiking which was synchronous with field events and pyramidal cell firing during ictal activity. On the other hand, interictal interneuronal bursts were synchronous with large-amplitude inhibitory postsynaptic potentials (IPSPs) in pyramidal cells. Excitatory and inhibitory postsynaptic potentials were simultaneously received by pyramidal neurons during the ictal afterdischarge, and were synchronous with interneuronal bursting and field potential ictal events. The GABAA receptor antagonist bicuculline greatly reduced the duration of the ictal activity in the CA1 layer, and evoked rhythmic interictal synchronous bursting of interneurons and pyramidal cells. With intact GABAergic transmission, interictal field potential events were synchronous with large amplitude IPSPs (9.8 +/- 2.4 mV) in CA1 pyramidal cells, and with interneuronal bursting. Simultaneous dual recordings revealed synchronous IPSPs received by widely separated pyramidal neurons during ictal and interictal periods, indicative of widespread interneuronal firing synchrony throughout the hippocampus. CA3 pyramidal neurons fired in synchrony with interictal field potential events recorded in the CA1 layer, and glutamate receptor antagonists abolished interictal interneuronal firing and synchronous large amplitude IPSPs received by CA1 pyramidal cells. These observations provide evidence that the interneuronal network may be entrained in hyperexcitable states by GABAergic and glutamatergic mechanisms.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.