• Chest · Sep 2000

    Comparative Study

    Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide.

    • X G Sun, J E Hansen, H Ting, M L Chuang, W W Stringer, D Adame, and K Wasserman.
    • Division of Respiratory and Critical Care Physiology and Medicine, Depatment of Medicine, Harbor-UCLA Medical Center, St. John's Cardiovascular Research Center, Torrance, CA, USA.
    • Chest. 2000 Sep 1; 118 (3): 631-40.

    Background And Study ObjectiveTheoretically, cardiac output (CO) calculated by the Fick principle should be the same using O(2) (CO[O2]) or CO2 (CO[CO2]) as the test gas. However, agreement depends on the accuracy of gas exchange and blood gas measurements and the validity of the equations to convert measured variables into blood gas contents. Considering the widespread use of indirect estimates of pulmonary artery blood PCO2 and CO2 content to measure Fick principle CO during exercise, we wished to determine whether CO[O2] and CO[CO2] were equal during exercise and whether CO[CO2] could be accurately and precisely determined using direct measures of pulmonary artery blood. PREPARATION AND METHODS: Five healthy young nonsmoking volunteer men performed incremental exercise from rest to peak exercise on two separate occasions with intervening rest. Catheters were placed in brachial and pulmonary arteries to allow repeated blood sampling every minute during concurrent breath-by-breath gas exchange measurements from rest to peak exercise. CO[O2] was compared with CO[CO2] at multiple levels of exercise. Using standard equations, arterial and mixed venous O2 contents were calculated from hemoglobin concentration (Hb), oxyhemoglobin saturation (SO2), and PO2, whereas CO2 contents were calculated from PCO2, pH, Hb, and SO2. Blood gas analyzers were used for measurement of pH, PCO2, and PO2, and a co-oximeter was used for measurement of Hb and SO2. Initial calculations suggested that exercise CO[CO2] was 14% higher than CO[O2] and helped disclose small systematic measurement errors in PCO(2) for values > 45 mm Hg detected by proficiency testing surveys and documented with blood tonometry in the blood gas analyzer.ResultsAfter correcting PCO2 for the small systematic measurement error found, the measures and equations used to calculate arterial and mixed venous O2 and CO2 contents were adequate to provide mean CO values that are reasonably similar. However CO[CO2] values were more than twice as variable as CO[O2].ConclusionsThe increased variability of Fick principle CO[CO2] compared with CO[O2] is attributable to the much lower extraction ratio for CO2 and the greater complexity in calculation of blood CO2 than O2 contents. These results raise concerns about the accuracy and precision of estimating CO and stroke volume using CO2 as a test gas, even with direct measurement of blood CO2 contents in normal subjects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…