• Critical care medicine · Aug 1999

    Myocardial effects of ventricular fibrillation in the isolated rat heart.

    • R J Gazmuri, M Berkowitz, and H Cajigas.
    • Medical Service, Section of Pulmonary and Critical Care Medicine, North Chicago VA Medical Center, IL 60064, USA. rjgazmuri@aol.com
    • Crit. Care Med. 1999 Aug 1; 27 (8): 1542-50.

    ObjectiveVentricular fibrillation (VF) is known to increase myocardial oxygen requirements and to alter coronary vascular physiology. However, the significance of these effects during cardiac arrest and resuscitation is not well understood. A model was developed in the isolated rat heart to investigate the myocardial effects of VF during a simulated episode of cardiac arrest and resuscitation. We hypothesized that VF would intensify the severity of myocardial ischemia and consequently accentuate postischemic myocardial dysfunction.DesignProspective and randomized.SettingResearch laboratory.SubjectsTwenty Sprague-Dawley rats.InterventionsHearts were harvested and perfused at a constant flow rate of 10 mL/min using a modified Krebs-Henseleit solution equilibrated with 95% oxygen and 5% CO2. In five hearts, VF was induced by a 0.05-mA current delivered to the right ventricular endocardium. The perfusate flow was then stopped for a 10-min interval and resumed at 20% of baseline flow for another 10 mins. After 20 mins of VF, the perfusate flow was returned to baseline and a sinus rhythm reestablished by epicardial electrical shocks. The studies were randomized and included three additional groups to control for the effects of ischemia without VF (n = 5), the effects of VF without ischemia (n = 5), and the stability of the preparation (n = 5).Measurements And Main ResultsIsovolumic indices of left ventricular function were obtained using a latex balloon advanced through the mitral valve and distended to an end-diastolic pressure of 10 mm Hg. The coronary effluent was collected from the right ventricular cavity. VF during myocardial ischemia was associated with a higher coronary effluent PCO2, increased coronary vascular resistance, and development of ischemic contracture as indicated by increases in left ventricular pressure from 9+/-3 to 33+/-6 mm Hg (p < .05). After defibrillation, contractility and relaxation rapidly returned to baseline values, whereas the isovolumic end-diastolic pressure remained elevated for 20 mins. These changes were much less prominent when ischemia was not accompanied by VF.ConclusionsThese findings indicate that VF may adversely affect myocardial ischemia by hastening the development of ischemic contracture, increasing coronary vascular resistance, and favoring the development of diastolic pump failure early after resuscitation from cardiac arrest.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.