-
Randomized Controlled Trial
Effects of an acute bout of aerobic exercise on immediate and subsequent three-day food intake and energy expenditure in active and inactive men.
- Joel Rocha, Jenny Paxman, Caroline Dalton, Edward Winter, and David Broom.
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S10 2BP, United Kingdom. Electronic address: J.Rocha@shu.ac.uk.
- Appetite. 2013 Dec 1; 71: 369-78.
AbstractThis study examined the effects of an acute bout of low-intensity cycling on food intake and energy expenditure over four days. Thirty healthy, active (n=15) and inactive (n=15) men completed two conditions (exercise and control), in a randomised crossover fashion. The exercise experimental day involved cycling for one hour at an intensity equivalent to 50% of maximum oxygen uptake and two hours of rest. The control condition comprised three hours of rest. Participants arrived at the laboratory fasted overnight; breakfast was standardised and an ad libitum pasta lunch was consumed on each experimental day. Participants kept a food diary and wore an Actiheart to estimate energy intake and expenditure for the remainder of the experimental days and over the subsequent 3 days. Ad libitum lunch energy intake did not differ between conditions (p=0.32, d=0.18) or groups (p=0.43, d=0.27). Energy intake in the active group was greater on the exercise experimental day than on the control experimental day (mean difference=2070 kJ; 95% CI 397 to 3743 kJ, p=0.024, d=0.56) while in the inactive group it was increased on only the third day after exercise (mean difference=2225 kJ; 95% CI 414 to 4036 kJ, p=0.024, d=0.80). There was only a group effect (p=0.032, d=0.89) for free-living energy expenditure, indicating that active participants expended more energy than inactive over this period. Acute low-intensity exercise did not affect energy intake at the meal immediately after exercise, but induces an acute (within the experimental day) and delayed (third day after the experimental day) increase in energy intake in active and inactive participants, respectively with no compensatory changes to daily energy expenditure. These results suggest that active individuals compensate for an acute exercise-induced energy deficit quicker than inactive individuals.Copyright © 2013 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*,_underline_or**bold**. - Superscript can be denoted by
<sup>text</sup>and subscript<sub>text</sub>. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3., hyphens-or asterisks*. - Links can be included with:
[my link to pubmed](http://pubmed.com) - Images can be included with:
 - For footnotes use
[^1](This is a footnote.)inline. - Or use an inline reference
[^1]to refer to a longer footnote elseweher in the document[^1]: This is a long footnote..