• JAMA · Oct 2009

    Randomized Controlled Trial

    Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials.

    • Thomas G Smith, Nick P Talbot, Catherine Privat, Maria Rivera-Ch, Annabel H Nickol, Peter J Ratcliffe, Keith L Dorrington, Fabiola León-Velarde, and Peter A Robbins.
    • Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Bldg, Parks Road, Oxford OX1 3PT, England.
    • JAMA. 2009 Oct 7; 302 (13): 1444-50.

    ContextHypoxia is a major cause of pulmonary hypertension in respiratory disease and at high altitude. Recent work has established that the effect of hypoxia on pulmonary arterial pressure may depend on iron status, possibly acting through the transcription factor hypoxia-inducible factor, but the pathophysiological and clinical importance of this interaction is unknown.ObjectiveTo determine whether increasing or decreasing iron availability modifies altitude-induced hypoxic pulmonary hypertension.Design, Setting, And ParticipantsTwo randomized, double-blind, placebo-controlled protocols conducted in October-November 2008. In the first protocol, 22 healthy sea-level resident men (aged 19-60 years) were studied over 1 week of hypoxia at Cerro de Pasco, Peru (altitude 4340 m). In the second protocol, 11 high-altitude resident men (aged 30-59 years) diagnosed with chronic mountain sickness were studied over 1 month of hypoxia at Cerro de Pasco, Peru.InterventionIn the first protocol, participants received intravenous infusions of Fe(III)-hydroxide sucrose (200 mg) or placebo on the third day of hypoxia. In the second protocol, patients underwent staged isovolemic venesection of 2 L of blood. Two weeks later, patients received intravenous infusions of Fe(III)-hydroxide sucrose (400 mg) or placebo, which were subsequently crossed over.Main Outcome MeasureEffect of varying iron availability on pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography.ResultsIn the sea-level resident protocol, approximately 40% of the pulmonary hypertensive response to hypoxia was reversed by infusion of iron, which reduced PASP by 6 mm Hg (95% confidence interval [CI], 4-8 mm Hg), from 37 mm Hg (95% CI, 34-40 mm Hg) to 31 mm Hg (95% CI, 29-33 mm Hg; P = .01). In the chronic mountain sickness protocol, progressive iron deficiency induced by venesection was associated with an approximately 25% increase in PASP of 9 mm Hg (95% CI, 4-14 mm Hg), from 37 mm Hg (95% CI, 30-44 mm Hg) to 46 mm Hg (95% CI, 40-52 mm Hg; P = .003). During the subsequent crossover period, no acute effect of iron replacement on PASP was detected.ConclusionHypoxic pulmonary hypertension may be attenuated by iron supplementation and exacerbated by iron depletion.Trial Registrationclinicaltrials.gov Identifier: NCT00952302.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…